Math, asked by aditya5037, 3 months ago

Perimeter of a rectangular plot is 860 m. Its length is 4 more than its breadth. Find its length and breadth.


pls fast​

Answers

Answered by chirags1725
3

let breadth be x and length be y

perimeter=2(length + breadth)

860=2(x+4+x)

860=2(2x+4)

2x+4= 430

2x= 426

x=218m

breath = 218m

length= breadth+4=222m

hope this helps..

please mark as Brainliest

Answered by mathdude500
3

Gɪᴠᴇɴ :-

  • Perimeter of a rectangular plot is 860 m.

  • The length is 4 more than its breadth.

Tᴏ Fɪɴᴅ :-

  • Length of Rectangular plot.

  • Breadth of Rectangular plot.

\large\underline{\sf{Solution-}}

Given that,

Length of the rectangular plot is 4 more than its breadth.

\begin{gathered}\begin{gathered}\bf\: Let-\begin{cases} &\sf{Breadth_{(rectangle)} = x \: m} \\ &\sf{Length_{(rectangle)} =( 4 + x )\: m} \end{cases}\end{gathered}\end{gathered}

it is given that

  • Perimeter of Rectangular plot = 860 m

We know that,

 \red{ \boxed{ \bf \: Perimeter_{(rect.)}= 2(Length_{(rect.)}+Breadth_{(rect.)}}}

So,

On substituting the values, we get

\rm :\longmapsto\:860 = 2(x + 4 + x)

\rm :\longmapsto\:860 = 2(2x + 4)

\rm :\longmapsto\:860 = 4x \:  + \: 8

\rm :\longmapsto\:4x = 860 - 8

\rm :\longmapsto\:4x = 852

\rm :\longmapsto\:x = \dfrac{ \cancel{852}}{ \cancel{4}}  = 213

\begin{gathered}\begin{gathered}\bf\: Hence-\begin{cases} &\sf{Breadth_{(rectangle)} = 213 \: m} \\ &\sf{Length_{(rectangle)} =217\: m} \end{cases}\end{gathered}\end{gathered}

Additional Information :-

 \blue{ \boxed{ \sf \: Area_{(rectangle)} = Length_{(rectangle)} \times Breadth_{(rectangle)}}}

 \blue{ \boxed{ \sf \: Area_{(square)} =  {side}^{2}}}

 \blue{ \boxed{ \sf \: Area_{(rhombus)} = base \times height}}

 \blue{ \boxed{ \sf \: Area_{(parallelogram)} = base \times height}}

 \blue{ \boxed{ \sf \: Perimeter_{(square)} = 4 \times side}}

 \blue{ \boxed{ \sf \: Perimeter_{(rhombus)} = 4 \times side}}

Similar questions