Math, asked by SANAALI905, 1 year ago

Perimeter of a rhombus is 2p units. sum of their diagonal is m unit. what is the area of rhombus

Answers

Answered by bhagyashreechowdhury
3

The area of the rhombus is ¼ * (m² − p²).

Step-by-step explanation:

Step 1:

The perimeter of the rhombus = 2p units  

We have,  

Perimeter = 4 * side of the rhombus

⇒ 2p = 4 * side of the rhombus

Side of the rhombus = p/2 units  

Step 2:

Let’s assume the diagonal, AC = 2y and BD = 2x

OA = OC = y and OB = OD = x

We know that the diagonals of a rhombus bisect at 90 deg

∠AOB = ∠BOC = ∠COD = ∠AOD = 90°

Consider right-angled △OBC and applying Pythagoras theorem, we get

OB² + OC² = BC²

⇒ x² + y² = p²/4

4x² + 4y² = p² ..... (i)

Also given that the sum of the diagonals is m units i.e.,  

2x + 2y = m

Squaring throughout

⇒ 4x² + 2y² + 8xy = m²

4x² + 4y² = m² – 8xy ..... (ii)

Step 3:

Now, from (i) and (ii)

m²– 8xy =p²

⇒ 8xy = m² − p²

⇒ 4 × (2xy) = m² − p²

2xy = ¼ * (m² − p²) ….. (iii)

Thus,

The area of the Rhombus is given by,

= ½ * diagonal 1 * diagonal 2

= ½ * AC * BD

= ½ * 2x * 2y

= ½ * 4xy

= 2xy

Substituting from (iii)

= ¼ * (m² − p²)

-------------------------------------------------------------------------------------------

Also View:

Area of a rhombus is 72 square units .If the perimeter is 82 cm. Find its altitude

https://brainly.in/question/7261506

Find the area of the rhombus whose base =2.5and height=13.2

https://brainly.in/question/6335845

Attachments:
Answered by qwdonut
1

The area of the rhombus is 1\frac{1}{4} (m^{2}-p^{2}  )

  • Perimeter of the rhombus= 2p units

                   4 x sides = 2p

                      side= p/2

  • Now, In rhombus ABCD

                     diagonal AC;  OA=OC=a ;AC=2a

                     diagonal BD;  OB=OD=b ;BD=2b

                                       a + b =p/2

                                       a^{2} +b^{2} =\frac{p^{2} }{4}

  • On squaring

                                      4a^{2}+4b^{2}=p^{2}

  •        But the sum of the diagonal is 2a+2b=m
  •                              On squaring

                    4a^{2}+4b^{2}+8ab=m^{2}

                          p^{2}+8ab=m^{2}  

                          8ab=m^{2}-p^{2}   ; 4(2ab)=m^{2}-p^{2}    

  • we know that, area of the rhombus=\frac{1}{2}  d_{1} d_{2}

                    =\frac{1}{2} 2a 2b

                    =  2ab

                    =    \frac{1}{4} m^{2}-p^{2}

       

Similar questions