Math, asked by priyankaak2409, 9 months ago

Perimeter of a rhombus is 42 and one of the diagonals is 12 cm find its area

Answers

Answered by alicearabella0511
0

Step-by-step explanation:

first write what is given then write the area of rhombus then solve as I solved above

Attachments:
Answered by Anonymous
10

 \large\bf\underline{Given:-}

  • perimeter of rhombus = 42 unit's
  • Length of one diagonal = 12cm.

 \large\bf\underline {To \: find:-}

  • Area of rhombus.

 \huge\bf\underline{Solution:-}

 \bf \dag \: perimeter \: of \: rhombus = 2 \times  \sqrt{d_1 {}^{2}  +d_2 {}^{2} }

  • Let the other diagonal be x units.

Perimeter of rhombus = 42 units.

\dashrightarrow \rm \: 2 \times  \sqrt{12 {}^{2} +  {x}^{2}  }  = 42 \\  \\ \dashrightarrow \rm \:  \sqrt{144 +  {x}^{2} }  = \cancel  \frac{42}{2}  \\  \\ \dashrightarrow \rm \:  \sqrt{44 +  {x}^{2} }  = 21 \\  \\ \dashrightarrow \rm \: 44 +  {x}^{2}  =  {21}^{2}  \\  \\ \dashrightarrow \rm \: 44 +  {x}^{2}  = 441 \\  \\ \dashrightarrow \rm \:  {x}^{2}  = 441 - 44 \\  \\ \dashrightarrow \rm \:  {x}^{2}  = 397 \\  \\ \dashrightarrow \rm \: x =  \sqrt{397}

So the other diagonal = √397

 \bf \dag \: area \: of \: rhombus =  \frac{1}{2}  \times \:  d_1 \times  d_2

 \longmapsto \rm \:ar. \: of \: rhomnus =   \frac{1}{2}  \times 12 \times  \sqrt{397}  \\  \\  \longmapsto \rm \:ar. \: of \: rhomnus = 6 \times  \sqrt{397}  \\  \\  \longmapsto \rm \:ar. \: of \: rhomnus = 119.54  \: sq.units

Similar questions