Perimeter of a square and circumference of a circle are equal. If the area of
the circle is 616 cm?, find the area of the square.
Answers
Area = 484 cm²
Step-by-step explanation:
Given:
Perimeter of a square & circumference of. circle are equal.
Area of circle is 616 cm².
To Find:
What is the area of square ?
Solution: Let the measure of each side of square be a cm.
As we know that
★ Area of Circle = πr² ★
➡ 616 = 22/7 × r²
➡ 616 ×7/22 = r²
➡ 56 × 7/2 = r²
➡ √28 × 7 = r
➡ √196 = r
➡ 14 cm = r
So measure of radius of circle is 14 cm. Now , Let's find the circumference of circle.
★ Circumference = 2πr ★
➮ 2 × 22/7 × 14
➮ 44 × 2 = 88 cm
★ Perimeter of Square = 4a ★
A/q
Perimeter = Circumference
⟹ 4 × a = 88
⟹ a = 88/4
⟹ a = 22 cm
★ Area of Square = a² ★
⟹ (22 × 22) cm²
⟹ 484 cm²
Hence, area of the square is 484 cm².
Answer:
Step-by-step explanation:
Here we know that perimeter and circumference are equal , we want the area of the square.
First we have to find the radius of the circle
= 22/7 x r x r = 616 cm
= r x r = 616 cm x 7/22
= r x r = 196
= r =14 cm
Now we know that perimeter and circumference of a circle are equal .
we have to find circumference.
= 2 x 22/7 x 14 cm
= 88 cm
Now we have to find the side of the circle. We know that perimeter of a square = side x 4
s x 4 =88 cm
s = 88/4
s = 22 cm
area of a square = side x side
= 22 cm x 22 cm
= 484 cm