perimeter of an equilateral triangle is 450 m.find its area and altitude.(use √3=1.73)
Answers
Answered by
47
perimeter = 3 * a = 450 m
side a = 150 m
Altitude = AD Base = BC. AD ⊥ BC . D is the midpoint of BC.
Using Pythagoras th.: AD² = AC² - DC² = a² - (a/2)² = 3 a² / 4
Altitude of an equilateral triangle = √3/2 * a
Area = 1/2 * base * altitude
= √3 a² / 4 = √3 * 150² / 4 = 5625√3 m²
side a = 150 m
Altitude = AD Base = BC. AD ⊥ BC . D is the midpoint of BC.
Using Pythagoras th.: AD² = AC² - DC² = a² - (a/2)² = 3 a² / 4
Altitude of an equilateral triangle = √3/2 * a
Area = 1/2 * base * altitude
= √3 a² / 4 = √3 * 150² / 4 = 5625√3 m²
Similar questions