Math, asked by mahachinu9gmailcom, 2 months ago

perimeter of base of a cylinder is 5cm and its curved surface area is 10cm2 ,then the height of the cylinder is a)50cm b)15cm c)2cm d)5cm​

Answers

Answered by SachinGupta01
21

\bf \underline{ \underline{\maltese\:Given} }

 \sf \implies P erimeter  \: of  \: base \:  of  \: a  \: cylinder  =  5 \: cm

 \sf \implies Curved  \: surface \:  area = 10  \: cm^{2}

\bf \underline{ \underline{\maltese \: To \:  find  } }

 \sf \implies Height  \: of  \: the \:  cylinder =  \: ?

\bf \underline{ \underline{\maltese \: Solution  } }

 \sf  \underline{First  \: of  \: all  \: find \:  the  \: radius  \: of \:  the \:  cylinder. }

 \sf Perimeter  \: of \:  cylinder = Circumference

\implies \sf Circumference = 2\pi r

 \sf  \longrightarrow Note :  \: Value \:  of \:  \pi  =  \dfrac{22}{7}

 \bf \underline{So},

\implies \sf 5 = 2 \times  \dfrac{22}{7}  \times r

\implies \sf r = \dfrac{5\times 7}{2 \times 22}

\implies \sf r = \dfrac{35}{44}

 \sf Thus, \:  radius =  \dfrac{35}{44}  \: cm

 \sf \underline{Now, find  \: the  \: height  \: of \:  cylinder. }

\implies \sf C.S.A = 2\pi rh

 \bf \underline{Where},

 \sf  \implies Value \:  of \:  \pi  =  \dfrac{22}{7}

 \sf  \implies r = radius

 \sf  \implies h = height

 \sf  \underline {Substituting \:  the  \: values},

\implies \sf 10 = 2 \times  \dfrac{22}{7}  \times \dfrac{35}{44} \times h

\implies \sf h = \cancel  \dfrac{10 \times 44 \times 7}{35 \times 22 \times 2}  = 2

\implies \sf h = 2 \: cm

 \underline{ \boxed{ \bf \red{Therefore, \:  height  \: of \:  the  \: cylinder = 2 \:  cm}}}

Similar questions