Math, asked by munawwarali6784, 8 months ago

Perimeter of equilateral triangle is 24 cm if its height is 6cm. Find its area.

Answers

Answered by mysticd
1

/* There is a mistake in the question. Height is 6cm is wrong */

 Let \: side \:of \:an \: equilateral \: triangle =a \:cm

i) \blue { Perimeter \:of \: the \: triangle }

 = 24 \:cm \: ( given )

 \implies 3a = 24 \: cm

 \implies a= \frac{24}{3}

 \therefore \green { a = 8 \:cm }

 ii) \red{Area \: of \: the \: equilateral \: triangle}

 = \frac{\sqrt{3}}{4} a^{2}

 = \frac{\sqrt{3}}{4}\times  8^{2}

 = \frac{\sqrt{3}}{4}\times  8\times 8

 = \sqrt{3} \times 8 \times 2

 = 16\sqrt{3} \: cm^{2}

Therefore.,

\red{Area \: of \: the \: equilateral \: triangle}

 \green { = 16\sqrt{3} \: cm^{2}}

 iii) If \: Height \: of \: the \: triangle (h) = 6 \:cm

 \implies \frac{\sqrt{3}}{2} \times a = 6

 \implies a = \frac{12}{\sqrt{3}} \: --(1)

iv )\red{Area \: of \: the \: equilateral \: triangle}

 = \frac{\sqrt{3}}{4} a^{2}

 = \frac{\sqrt{3}}{4}\times  \Big(\frac{12}{\sqrt{3}}\Big)^{2}

 = \frac{\sqrt{3}}{4}\times \frac{144}{3}

 = \sqrt{3} \times 12

 = 12\sqrt{3} \: cm^{2}

Therefore.,

\red{Area \: of \: the \: equilateral \: triangle}

 \green { = 12\sqrt{3} \: cm^{2}}

•••♪

Similar questions