Math, asked by aayushbisht18, 3 months ago

perimeter of rectangle is 120 cm if breath of the rectangle is 14 cm find its length and area of rectangle​

Answers

Answered by cm497686255
1

Answer:

length = 46cm

Step-by-step explanation:

I hope my answer is correct ☺️

Answered by BrainlyRish
4

Given : The Perimeter of Rectangle is 120 cm & the Breadth of Rectangle is 14 cm .

Exigency to find : Length and Area of Rectangle .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the Length of Rectangle be x cm .

⠀⠀Finding Length of Rectangle :

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{Perimeter _{(Rectangle)} \:: 2( l +  b) }\bigg\rgroup \\\\

⠀⠀Here l is the Length of Rectangle & b is the Breadth of Rectangle & we know the Perimeter of Rectangle is 120 cm

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \longmapsto \sf 120 = 2( x + 14 ) \\

\qquad \longmapsto \sf \cancel {\dfrac{120}{2}} = ( x + 14 ) \\

\qquad \longmapsto \sf 60 = ( x + 14 ) \\

\qquad \longmapsto \sf 60 - 14 = x   \\

\qquad \longmapsto \frak{\underline{\purple{\:x = 46 cm }} }\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Length \:of\:Rectangle \:is\:\bf{46\:cm}}}}\\

⠀⠀Finding Area of Rectangle :

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ Area_{(Rectangle)} \:: l \times b }\bigg\rgroup \\\\

⠀⠀Here l is the Length of Rectangle & b is the Breadth of Rectangle

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \longmapsto \sf Area = 46 \times 14  \\

\qquad \longmapsto \frak{\underline{\purple{\:Area = 644 cm^2 }} }\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Area \:of\:Rectangle \:is\:\bf{644\:cm^2}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\qquad \leadsto \sf Area_{(Rectangle)} = Length \times Breadth

\qquad \leadsto \sf Perimeter _{(Rectangle)} = 2 (Length + Breadth)

\qquad \leadsto \sf Area_{(Square)} = Side \times Side

\qquad \leadsto \sf Perimeter _{(Square)} = 4 \times Side

\qquad \leadsto \sf Area_{(Trapezium)} = \dfrac{1}{2} \times Height \times (a + b )

\qquad \leadsto \sf Area_{(Parallelogram)} = Base \times Height

\qquad \leadsto \sf Area_{(Triangle)} = \dfrac{1}{2} \times Base \times Height

\qquad \leadsto \sf Area_{(Rhombus)} = \dfrac{1}{2} \times Diagonal _{1}\times Diagonal_{2}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions