Math, asked by Maniry6851, 10 months ago

Perimeter of the rhombus is 100 m and its diagonal is 40 m. find the area of rhombus.

Answers

Answered by sourya1794
11

{\bold{\huge{\blue{\underline{\red{A}\purple{ns}\orange{wer}\pink{!!!!!...}}}}}}

\bf\:Perimeter\:of\:rhombus =4\times\:side

\bf\implies\:100= 4\times\:side

\bf\implies\:side=\dfrac{100}{4}

\bf\implies\:side= 25\:m

We know that diagonals of a rhombus divides the rhombus in two equilateral triangle.

then,

Area of 1 equilateral triangle,

\bf\:Semi\: perimeter=\dfrac{25+25+40}{2}

\bf\:semi\: perimeter=\dfrac{90}{2}

\bf\:semi\: perimeter=45\:m

Now,

\bf\boxed\star\green{\underline{\underline{{By\: Using\: Heron's\: Formula:-}}}}

\bf\:Area\:of\: triangle=\sqrt{s(s-a)(s-b)(s-c)}

\bf\:Area\:of\: triangle=\sqrt{45(45-40)(45-25)(45-25)}

\bf\:Area\:of\: triangle=\sqrt{45\times\:5\times\:20\times\:20}

\bf\:Area\:of\: triangle=300\:{m}^{2}

then,

\bf\:Area\:of\:rhombus=2\times\:300{m}^{2}

\bf\:Area\:of\:rhombus=600{m}^{2}

Similar questions