Math, asked by aqibshaikh6772, 9 months ago

Perimeter of triangular field is 135cm sides in a ratio of 25:17:12 find area using herons formula

Answers

Answered by har858
2

Step-by-step explanation:

The perimeter of a triangular field is 240 m, and its sides are in the ratio 25:17:12. Find the area of the field. Also, find the cost of ploughing the field at Rs.40 per m2

Answered by vaishu775
39

\red{\bigstar} G I V E N

  • The perimeter of the triangular field is 135 cm
  • The ratio of sides of triangular field is 25:17:12

\blue{\bigstar} T OㅤF I N D

  • Area of the triangular field ?

\purple{\bigstar} S O L U T I O N

  • Let sides of the triangular field be 25x, 17x, 12x

\quad\odot\:\underline{\boxed{\sf{Perimeter_{(triangular\:field)} = Sum\:of\:all\:sides\:of\:triangular\:field}}}

Putting all known values ::

\sf \quad \dashrightarrow\quad 135 = 25x + 17x + 12x

\begin{gathered}\\ \sf \quad \dashrightarrow\quad 54x = 135\end{gathered}

\begin{gathered}\\ \sf \quad \dashrightarrow\quad x = {\cancel{\dfrac{135}{54}}}\end{gathered}

\begin{gathered}\\ \sf \quad \dashrightarrow\quad \pink{x = 2.5\:cm}\end{gathered}

\green{\bigstar} H E N C E

Sides of triangular field ::

  • 1st side = 25x = 25 × 2.5 = 62.5 cm
  • 2nd side = 17x = 17 × 2.5 = 42.5 cm
  • 3rd side = 12x = 12 × 2.5 = 30 cm

We know that ::

\quad\odot\:\underline{\boxed{\sf{Semi\:Perimeter_{(triangular\:field)}\:(s) = \dfrac{Perimeter_{(triangular\:field)}}{2}}}}

Putting all known values ::

\sf \quad \dashrightarrow\quad Semi\:Perimeter_{(triangular\:field)}\:(s) = \dfrac{135}{2}

After cancelling 135 with 2, we get ::

\sf \quad \dashrightarrow\quad\pink{Semi\:Perimeter_{(triangular\:field)}\:(s) = 67.5\:cm}

Now, finding area of triangular field ::

Using heron's formula ::

\quad\odot\:\underline{\boxed{\sf{Area_{(triangular\:field)} = \sqrt{s\:(s - a)\:(s - b)\:(s - c)}}}}

Where a, b, and c are sides of triangular field.

Putting all known values ::

\sf \quad \dashrightarrow\quad Area_{(triangular\:field)} = \sqrt{67.5\:(67.5 - 62.5)\:(67.5 - 42.5)\:(67.5 - 30)}

\begin{gathered}\\ \sf \quad \dashrightarrow\quad Area_{(triangular\:field)} = \sqrt{67.5\:\times\:5\:\times\:25\:\times\:37.5}\end{gathered}

\begin{gathered}\\ \sf \quad \dashrightarrow\quad Area_{(triangular\:field)} = \sqrt{316406.25}\end{gathered}

\begin{gathered}\\ \sf \quad \dashrightarrow\quad \pink{Area_{(triangular\:field)} = 562.5\:cm^2}\end{gathered}

\therefore\:{\underline{\sf{Hence,\:area\:of\:triangular\:field\:is\:\bf{562.5\:cm^2}}}}

Similar questions