Math, asked by mjgoutham, 1 year ago

period of sinx+sin2x/cosx+cos2x

Answers

Answered by UdayKiran248
4
hello frnd here's the answer to the given question

hope ull get the answer to the given question and mark as brainliest one......✌✌✌✌
Attachments:
Answered by swethassynergy
0

The value of period of  \frac{sinx+sin2x}{cosx+cos2x}   is \frac{2\pi }{3}.

Step-by-step explanation:

Given:

\frac{sinx+sin2x}{cosx+cos2x}

To Find:

The value of period of  \frac{sinx+sin2x}{cosx+cos2x} .

Formula Used:

Sos A + Cos B = 2 Cos(A+B)/2 . Cos(A-B)/2

Solution:

As given-  \frac{sinx+sin2x}{cosx+cos2x}.

\frac{sinx+sin2x}{cosx+cos2x}

=\frac{2sin\frac{(x+2x)}{2} cos\frac{(x-2x)}{2} }{ 2cos\frac{(x+2x)}{2} cos\frac{(x-2x)}{2} }

=\frac{2sin\frac{3x}{2} cos\frac{x}{2} }{ 2cos\frac{3x}{2} cos\frac{x}{2} }

= \frac{sin\frac{3x}{2} }{cos\frac{3x}{2} }

= tan\frac{3x}{2}

The period of tan ax  is  \frac{\pi }{a}.

Hence, the period of tan\frac{3x}{2}  will be   =\frac{\pi }{(\frac{3}{2}) }  

                                                           =\frac{2\pi }{3 }

Thus, the value of period of  \frac{sinx+sin2x}{cosx+cos2x}   is \frac{2\pi }{3}.

PROJECT CODE#SPJ3

                                                       

Similar questions