Math, asked by sharmapal25, 4 months ago

Perpendicular distance between 3x + 4y - 5 = 0 and 6x + 8y - 15 = 0 is . .

(A) 1
(B) 1/2.
(C) 22/10
(D) 2​

Answers

Answered by BrainlyPopularman
40

GIVEN :

• Line are –

  \\ \:  \: \bf {\huge{.}} \:  \: 3x + 4y - 5 = 0\\

  \\ \implies\bf6x + 8y -15 = 0\\

  \\ \:  \: \bf {\huge{.}} \:  \: 3x + 4y -  \dfrac{15}{2} = 0\\

TO FIND :

• Perpendicular distance = ?

SOLUTION :

• We know that distance between two parallel lines ax+by+c=0 and ax+by+d=0 is –

  \\ \implies{ \boxed{ \red{\bf Distance =  \bigg |  \dfrac{c - d}{ \sqrt{ {a}^{2} +{b}^{2}}} \bigg| }}}\\

• Now , Put the values –

  \\ \implies\bf Distance =  \bigg |  \dfrac{ - 5-( -15/2) }{ \sqrt{ {3}^{2} +{4}^{2}}} \bigg|\\

  \\ \implies\bf Distance =  \bigg |  \dfrac{ - 5 + 15/2}{ \sqrt{9+16}} \bigg|\\

  \\ \implies\bf Distance =  \bigg |  \dfrac{(15 - 10)/2}{ \sqrt{25}} \bigg|\\

  \\ \implies\bf Distance =  \bigg |  \dfrac{(15 - 10)/2}{5}\bigg|\\

  \\ \implies\bf Distance =  \bigg |  \dfrac{5/2}{5}\bigg|\\

  \\ \implies\bf Distance =  \bigg |  \dfrac{5}{5 \times 2}\bigg|\\

  \\ \implies\bf Distance =  \bigg |   \cancel\dfrac{5}{10}\bigg|\\

  \\ \implies\bf Distance =  \bigg |   \dfrac{1}{2}\bigg|\\

  \\ \implies \red{ \boxed{\bf Distance = \dfrac{1}{2}}}\\

Hence , Option (B) is correct.

Answered by ADARSHBrainly
35

Option (B) 1/2

___________________________________

Given :-

  • Lines
  1. 3x + 4y - 5 = 0
  2. 6x + 8y - 15 = 0

To find :-

  • Perpendicular Distance between them.

Solution :-

Making the line 2 same as line 1.

{\sf{ \ratio\longmapsto{6x + 8y - 15 = 0}}}

{\sf{ \ratio\longmapsto{ \cfrac{ 6x + 8y - 15}{2} = 0}}}

{\sf{ \ratio\longmapsto{ \cfrac{ 6x }{2}+  \cfrac{ 8y}{2} -  \cfrac{ 15}{2}= 0}}}

{ \boxed{\sf{ \ratio\longmapsto{  3x + 4y - \cfrac{ -15}{2}= 0}}}}  ..........(eq \:2)

So, As we have seen that slopes of the lines are same so Perpendicular distance between can be found by given below formula :-

{\sf{ \underline{\boxed{\sf{ Perpendicular \:  Distance = \dfrac{|c_1 - c_2 |}{ \sqrt{ {a}^{2}  +  {b}^{2} } }}}}}}

Comparing equation with :-

(1) ax + by + c_1 with 3x + 4y - 5 = 0 we get,

  • a = 3
  • b = 4
  • c1 = -5

(2) ax + by + c_2 with 3x + 4y - 15/2 = 0 we get,

  • a = 3
  • b = 4
  • c = -15/2

_______________________________________

So, substituting the values in formula :-

{  \ratio\implies{\sf{ Perpendicular \:  Distance = \dfrac{|c_1 - c_2 |}{ \sqrt{ {a}^{2}  +  {b}^{2} } }}}}

{  \ratio\implies{\sf{ Perpendicular \dfrac{ \bigg| - 5 -  \bigg(  -  \cfrac{ 15}{2} \bigg)   \bigg|}{ \sqrt{ {3}^{2}  +  {4}^{2} } }}}}

{ \ratio\implies{\sf{ \dfrac{ \bigg| - 5   +  \cfrac{ 15}{2}  \bigg|}{ \sqrt{ {3}^{2}  +  {4}^{2} } }}}}

{ \ratio\implies{\sf{ \dfrac{ \bigg|  \cfrac{ - 5 \times 2}{1 \times 2}    +  \cfrac{ 15}{2}  \bigg|}{ \sqrt{ {3}^{2}  +  {4}^{2} } }}}}

{ \ratio\implies{\sf{ \dfrac{ \bigg|  \cfrac{ - 10}{2}    +  \cfrac{ 15}{2}  \bigg|}{ \sqrt{ {3}^{2}  +  {4}^{2} } }}}}

{ \ratio\implies{\sf{ \dfrac{ \bigg| \cfrac{ - 10 +  15}{2}  \bigg|}{{  \sqrt{9 + 16}} }}}}

{ \ratio\implies{\sf{  \dfrac{ \bigg| \:  \:  \cfrac{ 5}{2}  \:  \:  \bigg|}{{  \sqrt{25} } }}}}

{ \ratio\implies{\sf{  \dfrac{  \cfrac{ 5}{2}}{  \:  \:  \:  \:  \:  \:  5\:  \:  \:  \:  \:  \:  \: } }}}

{ \ratio\implies{\sf{  \cfrac{ 5}{2} \: \div  \cfrac{5}{1} }}}

{ \ratio\implies{\sf{ \cfrac{ 5}{2} \:  \times   \cfrac{1}{5} }}}

{ \ratio\implies{\sf{ \cfrac{ 5}{2 \times 5} \:  }}}

{ \ratio\implies{\sf{  \cfrac{ 5}{10} \:  }}}

{ \underline{ \boxed{ \green{ \ratio\implies{\sf{ Perpendicular \:  Distance = \cfrac{ 1}{2} \:  }}}}}}

Similar questions