Math, asked by taradevithakur48, 7 months ago

perumeter of rectangle is equal to the perimeter of squareif the length and breath of the rectangle is 20 m and 10 m find the area of square​

Answers

Answered by SarcasticL0ve
55

\sf Given \begin{cases} & \sf{Perimeter_{\:(rectangle)} = Perimeter_{\:(square)}}  \\ & \sf{Length\:of\:rectangle = \bf{20\:m}} \\ & \sf{Breadth\:of\:rectangle = \bf{10\:m}} \end{cases}\\ \\

To find: Area of square?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

☯ Let's consider side of square be a cm.

⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

:\implies\sf Perimeter_{\:(rectangle)} = Perimeter_{\:(square)}\\ \\ \\ :\implies\sf 2(length + breadth) = 4 \times side\\ \\ \\ :\implies\sf 2(20 + 10) = 4 \times a\\ \\ \\ :\implies\sf 2 \times 30 = 4 \times a\\ \\ \\ :\implies\sf 60 = 4 \times a \\ \\ \\ :\implies\sf a = \cancel{ \dfrac{60}{4}}\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{a = 15}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Side\:of\:square\:is\: {\textsf{\textbf{15\:m}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

 \bf{\dag}\;{\underline{\frak{Now,\:Finding\:area\:of\:square,}}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(square)} = side \times side}}}}\\ \\

:\implies\sf Area_{\;(square)} = a \times a\\ \\ \\ :\implies\sf Area_{\;(square)} = 15 \times 15\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{Area_{\;(square)} = 225\:m^2}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Area\:of\:square\:is\: \bf{225\:m^2}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\qquad\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}} \\  \\

  • \sf Perimeter\:of\:rectangle = \bf{2(length + breadth)}

  • \sf Area\:of\:rectangle = \bf{length \times breadth}

  • \sf Diagonal\:of\:rectangle = \bf{\sqrt{(length)^2 + (breadth)^2}}

  • \sf Perimeter\:of\:square = \bf{4 \times side}

  • \sf Diagonal\:of\:square = \bf{ \sqrt{2} \times side}
Answered by Anonymous
60

Answer:

Given :-

  • Perimeter of rectangle = Perimeter of square
  • Length of rectangle = 20 m
  • Breadth of rectangle = 10 m

To Find :-

Area of square

Solution :-

For finding area we will first find side of square

 \tt \implies \: Perimeter (rectangle) =   Perimeter (square)

 \tt \implies \: 2(l + b) = 4 \times s

 \tt \implies 2(20 + 10) = 4s

 \tt \implies \: 2(30) = 4s

 \tt \implies \: 60 = 4s

 \tt \implies \: s \:  =  \dfrac{60}{4}

 \mathfrak \green{side = 15 \: m}

Now,

Let's find Area of square

 \bf \: Area \:of \: square \:  =  {side}^{2}

 \tt \implies \: Area =  {15}^{2}

 \tt \implies \: Area = 15 \times 15

 \mathfrak \purple{Area = 225 \:  {m}^{2} }

Hence :-

 \dag \bf \underline {Area \: of \: square \:  = 225 \:  {m}^{2} }

Similar questions