Math, asked by Tejapoosa9717, 8 months ago

Peter reads 2/5 of a book on the first day and 5/6 of the remainder on the second day. If the number of pages still unread is 50, how many pages does the book contain?

Answers

Answered by ajesh7
4

Answer:

The answer is 500

500*2/5=200

500-200=300

300*5/6=250

Therfore the remaining pages are=300-250=50

Answered by Syamkumarr
0

Answer:

The number of pages the book contain = 500 pages

Step-by-step explanation:

Given Peter reads 2/5 of a book on first day

On second day reads 5/6 of the remainder of the book

And number of pages still unread is 50

Here we need to find total number of pages in book

Let X be the number of pages in book    

on first day peter reads 2/5 of the book = \frac{2}{5} X  

remaining pages after reading 2/5 of book = X - \frac{2}{5} X  

                                                                      =  \frac{5X -2X}{5} = \frac{3X}{5}  

on second day Peter reads 5/6 of remainder part =  \frac{5}{6} (\frac{3X}{5} )=  \frac{X}{2}  

the total number of pages read by Peter =  \frac{2}{5} X+ \frac{X}{2}

                                                                    = \frac{4X + 5X}{10} = \frac{9X}{10}  

from given data the number of pages still unread  = 50

⇒ The total number of pages =  numbers pages read + unread pages

                                           ⇒  X = \frac{9X}{10} + 50

                                           ⇒   X = \frac{9X + 500}{10}  

                                           ⇒ 10X = 9X + 500

                                            ⇒ X = 500 pages

The number of pages the book contain = 500 pages

Similar questions