Math, asked by rsudhanshu83, 11 months ago

phi is subset of every set....prove it...​

Answers

Answered by amitkumar44481
6

 \large \mathfrak \red{Given:-}

 \:  \:  \:  \:  \:  \:  \tt{ \phi  \: is  \: subset \:  of \:  every  \: set.} \\  \:  \:  \:  \:  \:  \:  \: \tt{prove \:  it.}

\large \mathfrak \red{Solution:-}

 \underline \blue{ \:  \:  \:  \: Firstly. \:  \:  \:  \:  \: }

  \:  \:  \: \tt{What \:  is  \: meaning \:  of   \:  \red{\phi } \: in  \: set  \: ?}

  \:  \:  \:  \:  \:  \: \tt{ It  \: is  \: a \:  type \:  of  \: set  \: which}  \\ \tt{  \:  \:  \:  \:  \:  \: help \:  to \:  reorgan ize \:  by } \\  \:  \:  \:  \:  \:  \:  \tt{ emply  \: or \:  null  \: set  \: denoted } \\  \:  \:  \:  \:  \:  \:  \tt{ by \:  \phi\: or\:  \{\}.}

 \tt{Let  \:  \underline{Case  \: 1.}}

 \tt{A= \{a,b \}      \:  \:  \:  \:  \:  \:  \:  where  \: as  \:  {2}^{n} \implies  4.}

 \tt{A= \{ \{a \} \{b \} \{a,b \} \{ \} \}} \\

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge \tt{A     \subset    \phi}

 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt { \red{H}ance  \:  \red{P}roved.}

Attachments:
Answered by TtHhAaNnUuSsHh
7

Answer:

yes ,phi is subset of every set

because phi is a empty (or) void set

empty set will contain no elements

EX: take A={1,2}

and B={ }

set B is subset of A unless there is some element in B that is not in A

if B is not a subset of A then there is a element in set B,but B has no elements Hence this is a contradiction,

there fore phi or null set is a empty set of every set

Similar questions