Physics, asked by aditya2020222003, 1 year ago

physics class 11
dimensional analysis.
nootan isc physics​

Attachments:

Anonymous: What is to be find here.?
aditya2020222003: prove the equation to be correct
aditya2020222003: by dimensional formula
aditya2020222003: pls help me.
Anonymous: Oh.. wait.

Answers

Answered by Anonymous
11
 \textsf{\underline {\Large {Consistency of Dimensions}}} :

Given, V = Volume of a liquid

 \mathsf{\eta} = Coefficient of viscosity

Radius of tube = r

Pressure difference = p

Relation :  \boxed{\mathsf{V\:=\:{\dfrac{\pi{p{{r} ^{4}}}}{8{\eta{l}}}}}}

Actually, the above relation will be written as

 \boxed{\mathsf{V\:=\:{\dfrac{\pi{p{{r} ^{4}t}}}{8{\eta{l}}}}}}

Because it is for the rate of flow of liquid, i. e.  \mathsf{\dfrac{V} {t}} . 't' will always be there in the denominator to show the rate of flow.

Now,

Dimension of Volume, V =  \mathsf{[{L} ^{3}]}

Dimension of Radius, r =  \mathsf{[L]}

Dimension of Coefficient of Viscosity Viscosity,  \mathsf{\eta} =  \mathsf{[M{L} ^{-1}{T}^{-1}]}

Dimension of Pressure difference, p =  \mathsf{[M{L} ^{-1}{T}^{-2}]}

Putting these Dimensional Formulae in above relation :

 \Rightarrow{\mathsf {L.H.S.}} =  \mathsf{[{L} ^{3}]}

R. H. S. = \mathsf{\dfrac{[M{L} ^{-1}{T}^{-2}]\:[{L}^{4}]\:[T]}{[M{L} ^{-1}{T}^{-1}]\:[L]}}

R. H. S. = \mathsf{\dfrac{[M{L} ^{-1\:+\:4}{T}^{-1}]}{[M{L} ^{-1\:+\:1}{T}^{-1}]}}

R. H. S. = \mathsf{[{M} ^{1\:-\:1}{L} ^{3}{T}^{-1\:+\:1}] }

 \Rightarrow{\mathsf {R.H.S.}} = \mathsf{[{L} ^{3}]}

➡️ Hence, L. H. S. = R. H. S.

So, Given relation is correct or consistent.

\boxed{\mathsf {NOTE}} :  \mathsf{\pi} and 8 are neglected as they are dimensionless.

Anonymous: Awesome
Anonymous: Keep it up
Anonymous: Thanks :-)
Similar questions