Physics, asked by Anonymous, 7 months ago

Physics is as easy as falling off a log :')

Solve the question given in the attachment.

Answer:- Option A.

Kindly explain it _/\_

Attachments:

Answers

Answered by AdorableMe
65

________________________

We know :

\bullet\ \sf{| \overrightarrow{\Delta P}|=2 mvcos\ \theta(\Delta t)}

\sf{F=\dfrac{\overrightarrow{\Delta P}}{\Delta t} }\\\\\sf{\longmapsto F=2mv\ cos\theta }

We also know,

\bullet\ \sf{P=\dfrac{F}{A} }

\sf{\longmapsto P=\dfrac{2mv\ cos \theta }{A} }

\sf{\longmapsto Net\ Pressure=NP=\dfrac{2mv\ cos \theta\ N}{A} }

We have :-

  • Mass, m = 3.32 × 10⁻²⁷ kg
  • N = 10²³
  • cos θ = cos 45° = 1/√2
  • Velocity, v = 10³ m/s
  • Area, A =  2 cm² = 2 × 10⁻⁴ m²

Substituting all the values in the equation above :-

\sf{\longmapsto  P=\dfrac{x2 \times 3.32 \times 10^{-27}\times 10^2^3\times 10^3 \times \frac{1}{\sqrt{2} } }{2 \times 10^-^4} }

\displaystyle \sf{\longmapsto P=\frac{2 \times \frac{1}{\sqrt{2} }\times 3.32 \times 10^{-27}\times 10^{23}\times 10^3 \times 10^4 }{2}   }\\\\ \displaystyle \sf{\longmapsto  P=\frac{\sqrt{2} \times 3.32 \times 10^{-27+23+4}\times 10^3}{2} }\\\\\displaystyle \sf{\longmapsto  P=\sqrt{2} \times 1.66 \times 10^0 \times 10^3}\\\\\displaystyle \sf{\longmapsto  P=1.414 \times 1.66 \times 1 \times 10^3}\\\\\displaystyle \sf{\longmapsto  P=2.347 \times 10^3}\\\\

\boxed{\displaystyle \bf{\longmapsto  P=2.35 \times 10^3\ N/m^2}}

Therefore, the answer is (1) 2.35 × 10³ N/m².

Attachments:
Answered by Anonymous
8

Answer:

2.35 × 10³

Explanation:

Please consider the attached picture.

Attachments:
Similar questions