Physics, asked by harshbhardwaj22, 2 months ago

Physics Questions...

1) Find the acceleration due to gravity(g) on the surface of the earth given that radius of the earth is 6.37 × 10³ km, mass of the earth is 5.98×10²⁴kg.

2) A body can apply a force of 20 Newton and pull a box at constant speed of 2 m/s. Calculate power?

Answers

Answered by Anonymous
5

{\large{\pmb{\sf{\underline{QuEsion \: 1^{st}}}}}}

{\bigstar \:{\pmb{\sf{\underline{Given \: that...}}}}}

Mass of the body = 5.98 × 10²⁴ kilograms.

Radius of the body = 6.37 × 10³ kilometres.

The value of acceleration due to gravity that is g = ?

  • g = 9.87 m/s²

{\bigstar \:{\pmb{\sf{\underline{Using \: concepts...}}}}}

The value of gravitational constant.

Formula to convert kilometres into metres.

Some law of exponents.

Formula to find out the value of g (acceleration due to the gravity)

{\bigstar \:{\pmb{\sf{\underline{Using \: formulas...}}}}}

{\small{\underline{\boxed{\sf{\star \: 1 \: kilometres \: = 1000 \: metres}}}}}

{\small{\underline{\boxed{\sf{\star \: Value \: of \: G \: = 6.7 \times 10^{-11} \: Nm^2 kg^{-2}}}}}}

(Where, G denotes gravitational constant)

Using law of exponents:

\quad \quad{\sf{\bull a^b \times a^c = a^{b+c}}}

\quad \quad{\sf{\bull \dfrac{?}{a^{-c}} \: = \: ? \times a^c}}

(Here, this law means if any exponent have negative power and it is in denominator then when moved to numerator the exponent power be in positive. Vice versa for its inverse)

{\small{\underline{\boxed{\sf{\star \: g \: = G\dfrac{M}{R^2}}}}}}

(Where, g denotes acceleration due to gravity , G denotes gravitational constant , Mass denotes mass of object , R denotes radius)

{\bigstar \:{\pmb{\sf{\underline{Full \: Solution...}}}}}

~ Firstly let us change kilometres into metres by using the suitable formula!

:\implies \sf 1 \: kilometres \: = 1000 \: metres \\ \\ :\implies \sf 6.37 \times 10^3 = 6.37 \times 10^3 \times 1000 \\ \\ :\implies \sf 6370000 \: metres \\ \\ \tt In \: exponential \: form \\ \\ :\implies \sf 6.37 \times 10^6 \: metres

~ Now let's use the formula to find out the value of acceleration due to gravity (g) by using suitable formula. And there let us imply suitable values.

:\implies \sf g \: = G\dfrac{M}{R^2} \\ \\ :\implies \sf g = \dfrac{6.7 \times 10^{-11} \times 5.98 \times 10^{24}}{(6.37 \times 10^6)^{2}} \\ \\ :\implies \sf g = \dfrac{6.7 \times 10^{-11} \times 5.98 \times 10^{24}}{6.37 \times 10^6 \times 6.37 \times 10^6} \\ \\ :\implies \sf g = \dfrac{6.7 \times 5.98 \times 10^{-11} \times 10^{24} \times 10^{-6} \times 10^{-6}}{6.37 \times 6.37} \\ \\ :\implies \sf g = \dfrac{6.7 \times 5.98 \times 10^{-11} \times 10^{-6} \times 10^{-6} \times 10^{24}}{6.37 \times 6.37} \\ \\ :\implies \sf g = \dfrac{6.7 \times 5.98 \times 10^{-11 + (-6) + (-6)} \times 10^{24}}{6.37 \times 6.37} \\ \\ :\implies \sf g = \dfrac{6.7 \times 5.98 \times 10^{-11-6-6} \times 10^{24}}{6.37 \times 6.37} \\ \\ :\implies \sf g = \dfrac{6.7 \times 5.98 \times 10^{-17-6} \times 10^{24}}{6.37 \times 6.37} \\ \\ :\implies \sf g = \dfrac{6.7 \times 5.98 \times 10^{-23} \times 10^{24}}{6.37 \times 6.37} \\ \\ :\implies \sf g = \dfrac{6.7 \times 5.98 \times 10^{-23+24}}{6.37 \times 6.37} \\ \\ :\implies \sf g = \dfrac{6.7 \times 5.98 \times 10^{1}}{6.37 \times 6.37} \\ \\ :\implies \sf g = \dfrac{6.7 \times 5.98 \times 10^{1}}{40.5769} \\ \\ :\implies \sf g = \dfrac{400.66}{40.5769} \\ \\ :\implies \sf g = \dfrac{400660000}{40576900} \\ \\ :\implies \sf g = \dfrac{4006600}{405769} \\ \\ :\implies \sf g = 9.87 \: m/s

____________________

{\large{\pmb{\sf{\underline{QuEsion \: 2^{nd}}}}}}

{\bigstar \:{\pmb{\sf{\underline{Understanding \: the \: question...}}}}}

This question says that we have to find out the power when a body can apply a force of 20 Newton and pull a box at constant speed of 2 m/s.

{\bigstar \:{\pmb{\sf{\underline{Provided \: that...}}}}}

Force = 20N (Given)

Constant speed = 2 m/s (Given)

Power = ? (To find)

  • Power = 40 Watts

{\bigstar \:{\pmb{\sf{\underline{Full \: Solution...}}}}}

~ As we know that

{\small{\underline{\boxed{\sf{\star \: Power \: = \dfrac{Work \: done}{Time}}}}}}

~ We also know that

{\small{\underline{\boxed{\sf{\star \: Work \: done \: = Force \times Displacement \: or \: Distance}}}}}

~ We also know that

{\small{\underline{\boxed{\sf{\star \: Average \: speed \: = \dfrac{Total \: distance}{Total \: time}}}}}}

  • Therefore,

{\small{\underline{\boxed{\sf{\star \: v \: = \dfrac{s}{t}}}}}}

~ We can write this as

{\small{\underline{\boxed{\sf{\star \: P \: = \dfrac{f \times s}{t}}}}}}

{\small{\underline{\boxed{\sf{\star \: P \: = fv}}}}}

~ So according to condition

:\implies \sf P \: = fv \\ \\ :\implies \sf P \: = 20(2) \\ \\ :\implies \sf P \: = 20 \times 2 \\ \\ :\implies \sf P \: = 40 \: W \\ \\ :\implies \sf Power \: = 40 \: Watts

Attachments:
Similar questions