Physics, asked by koushik7881, 10 months ago

Physics questions and solution​

Attachments:

Answers

Answered by vs5091352
0

Answer:

Your answer is 28 a)scalar quantity

b)vector quantity

Hope it helps you friend

Answered by dna63
1

\mathbb{\large{\underline{\underline{EXPLANATION:-}}}}

\textbf{\underline{\underline{Que 22}}}</p><p>

\sf{Given}\begin{cases}\sf{t=10s}\\ \sf{a=-2.5ms^{2}}\\ \sf{u=??}\\ \sf{v=0ms^{-1}}\end{cases}

\textbf{\underline{Using equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{v=u+at}}}

\sf{\implies{v=u+(-2.5)(10)}}

\sf{\implies{v=u-25}}

\sf{\implies{u=25ms^{-1}}}

Therefore initial velocity,,

\sf{\underline{\boxed{u=25ms^{-1}}}}

\rule{200}2

\textbf{\underline{\underline{Que 23}}}</p><p>

\sf{Given}\begin{cases}\sf{t=2s}\\ \sf{a=10ms^{2}}\\ \sf{u=0ms^{-1}}\\ \sf{s=??}\end{cases}

\textbf{\underline{Using equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{s=ut+\frac{1}{2}at^{2}}}}

\sf{\implies{s=0t+\frac{1}{2}(10)(2)^{2}}}

\sf{\implies{s=\frac{1}{2}\times{40}}}

\sf{\implies{s=+20m}}

Hence the distance covered by the body,,

\sf{\underline{\boxed{s=20m}}}

\rule{200}2

\textbf{\underline{\underline{Que 24}}}</p><p>

\sf{Given}\begin{cases}\sf{t=10s}\\ \sf{a=0.2ms^{2}}\\ \sf{u=5ms^{-1}}\\ \sf{s=??}\\ \sf{v=??}\end{cases}

\textbf{\underline{Using equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{s=ut+\frac{1}{2}at^{2}}}}

\sf{\implies{s=5\times{10}+\frac{1}{2}(0.2)(10)^{2}}}

\sf{\implies{s=50+\frac{1}{2}\times{0.2}\times{100}}}

\sf{\implies{s=50+\frac{1}{2}\times{20}}}

\sf{\implies{s=50+10}}

\sf{\implies{s=60m}}

Therefore, Distance travelled by the motorcycle,,

\sf{\underline{\boxed{s=60m}}}

\textbf{\underline{To find final velocity,,}}</p><p>

\mathtt{\boxed{\blue{v=u+at}}}

\sf{\implies{v=5+(0.2)(10)}}

\sf{\implies{v=5+2}}

\sf{\implies{v=7ms^{-1}}}

Therefore,, final velocity of the motorcycle,,

\sf{\underline{\boxed{v=7ms^{-1}}}}

\rule{200}2

\textbf{\underline{\underline{Que 25}}}</p><p>

\sf{Given}\begin{cases}\sf{t=2.5s}\\ \sf{a=??}\\ \sf{u=18ms^{-1}}\\ \sf{v=0ms^{-1}}\end{cases}

\textbf{\underline{Using equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{0=18+a(2.5)}}}

\sf{\implies{\frac{-18}{2.5}=a}}

\sf{\implies{a=\cancel\dfrac{-180}{25}}}

\sf{\implies{a=-7.2ms^{-2}}}

Hence,, retardation,,

\sf{\underline{\boxed{a=-7.2ms^{-2}}}}

\rule{200}2

\textbf{\underline{\underline{Que 26}}}</p><p>

\sf{Given}\begin{cases}\sf{t=3min=180s}\\ \sf{a=0.2ms^{-2}}\\ \sf{u=0ms^{-1}}\\ \sf{v=??}\\ \sf{s=??}\end{cases}

\textbf{\underline{Using equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{v=u+at}}}

\sf{\implies{v=0+(2.5)(180)}}

\sf{\implies{v=25\times{18}}}

\sf{\implies{v=450ms^{-1}}}

Therefore,, speed acquired,,

\sf{\underline{\boxed{v=450ms^{-1}}}}

\rule{200}2

\textbf{\underline{To find distance ,,}}</p><p>

\textbf{\underline{Using equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{s=ut+\frac{1}{2}at^{2}}}}

\sf{\implies{s=0+\frac{1}{2}(0.2)(180)^{2}}}

\sf{\implies{s=\frac{1}{2}(0.2)(32400)}}

\sf{\implies{s=3240m}}

Therefore Distance travelled by the train,,

\sf{\underline{\boxed{s=3240m}}}

\rule{200}2

\textbf{\underline{\underline{Que 29}}}</p><p>

\sf{Given}\begin{cases}\sf{t=30s}\\ \sf{a=0.5ms^{-2}}\\ \sf{u=20ms^{-1}}\\ \sf{s=??}\end{cases}

\textbf{\underline{Using equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{s=ut+\frac{1}{2}at^{2}}}}

\sf{\implies{s=20\times{30}+\frac{1}{2}(0.5)(30)^{2}}}

\sf{\implies{s=600+\frac{1}{2}(0.5)(900)}}

\sf{\implies{s=600+225}}

\sf{\implies{s=825m}}

Therefore Distance travelled by the train,,

\sf{\underline{\boxed{s=825m}}}

\rule{200}2

\textbf{\underline{\underline{Que 30}}}</p><p>

\sf{Given}\begin{cases} \sf{a=??}\\ \sf{u=15ms^{-1}}\\ \sf{s=18m}\\ \sf{v=0ms^{-1}}\end{cases}

\textbf{\underline{Using equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{v^{-2}-u^{2}=2as}}}

\sf{\implies{0^{-2}-15^{2}=2a(18)}}

\sf{\implies{-225=36a}}

\sf{\implies{\cancel\dfrac{-225}{36}=a}}

\sf{\implies{a=-6.25ms^{-2}}}

Therefore,, deceleration,,

\sf{\underline{\boxed{a=-6.25ms^{-2}}}}

\rule{200}2

\textbf{\underline{\underline{Que 32}}}</p><p>

\textbf{\underline{(a) The train's velocity}}</p><p>

Ans- Since,the v-t graph is a straight horizontal line, therefore the train has uniform velocity.

\textbf{\underline{(b) The train's acceleration}}</p><p>

Ans- As we know that if velocity is uniform then acc is zero..Thus here Acc=0.

❣️❣️Hope it helps.. Please mark this answer as brainliest... thanks❣️❣️

Similar questions