Physics, asked by Anonymous, 11 months ago

♦ PHYSICS ♦
A \:  short \:  linear  \: object \:  of \:  length  \\ b  \: lies  \: along  \: the \:  axis \:  of  \: a  \: concave  \\ mirror  \: of \:  focal  \: length \:  f  \: at \:  a \\  distance  \: u  \: from  \: pole \:  of \:  mirror.  \\ What  \: is  \: the  \: size  \: of  \: image?
#Explanation of each and every step needed
#Spammed and copied answers are not accepted​

Answers

Answered by Anonymous
33

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

\tt {\blue{Given}} \begin{cases} \sf{\green{Height \: of \: object  \: = \: b}}  \\  \sf{\orange{Focal \: length \: = \: f}} \\  \sf{\pink{Object \: Distance \: = \: u}} \\ \sf{\purple{Height \: of \: Image \: = \: b'}} \end{cases}

As we know that Formula for magnification of mirror is :

\Large{\boxed{\boxed{\sf{m \: = \: \dfrac{b'}{b} \: = \: - \: \dfrac{v}{u}}}}}

Where as we can also write it was very small change :

\large : \implies {\sf{\dfrac{b'}{b} \: = \: - \bigg( \dfrac{dv}{du} \bigg) -----(1)}}

Also the mirror formula is :

\Large{\boxed{\boxed{\sf{\dfrac{1}{f} \: = \: \dfrac{1}{v} \: + \: \dfrac{1}{u}}}}}

\large : \implies {\sf{\dfrac{1}{v} \: = \: \dfrac{1}{f} \: - \: \dfrac{1}{u}}}

Take L.C.M

\large : \implies {\sf{\dfrac{1}{v} \: = \: \dfrac{u \: - \: f}{uf}}}

\large : \implies {\sf{v \: = \: \dfrac{uf}{u \: - \: f}}}

Now take

\Large \leadsto {\sf{\dfrac{dv}{du}}}

So,

Put value of (1) here

\large : \implies {\sf{\dfrac{dv}{du} \: = \: \dfrac{d}{du} \: \bigg( \dfrac{uf}{u \: - \: f} \bigg)}}

Now differentiate v with respect to d/du

We get,

\large : \implies {\sf{\dfrac{dv}{du} \: = \:  \bigg( \dfrac{-f}{u \: - \: f} \bigg)^2}}

\large : \implies {\sf{-\dfrac{dv}{du} \: = \: \bigg( \dfrac{f}{u \: - \: f} \bigg)^2}}

Now put value of -dv/du from (1)

\Large : \implies {\sf{\dfrac{b'}{b} \: = \: \bigg( \dfrac{f}{u \: - \: f} \bigg)^2}}

\LARGE {\underline{\boxed{\sf{b' \: = \: b  \bigg( \dfrac{f}{u \: - \: f} \bigg)  ^2}}}}


nirman95: Perfect Explanation ❤️❤️
Anonymous: I didn't understood anything-_-
Anonymous: Awesome explanation
Answered by ManuAgrawal01
50

\large\bf\underline{Given:-}

  • a short linear object of length

  • b lies along the axis of a concave mirror of focal length

  • f at a distance u from pole of mirror.

\large\bf\underline {To \: find:-}

  • what is the size of image?

\large\bf\underline{Formula \:  Used:-}

MIRROR FORMULA:-

  • \huge \underline{\boxed{ \pink{ \bf  \:  \frac{1}{v} +  \frac{1}{u}  +  \frac{1}{f} \longrightarrow(1)  }}}

\huge\bf\underline{Solution:-}

We Get,

 \sf \longrightarrow -  {v}^{ - 2} dv -  {u}^{ - 2} dv = 0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀or

 \sf \longrightarrow |dv|  =  | \frac{ {v}^{2} }{ {u}^{2} } | dv\longrightarrow(2)

Here |dv| = Size of image

|dv| = Size of object (= b)

From the Equation------------(1), We write

 \sf \longrightarrow \frac{ {v}^{2} }{ {u}^{2} }  = ( \frac{f}{u - f}  {)}^{2}

Substituting in Equation-----------(2), We get

 \large{ \underline{ \sf \therefore{ Size \: of \: the \: image \: dv = b \: ( \frac{f}{u - f } }}} {)}^{2}

\rule{200}3

Similar questions