Physics, asked by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ, 1 month ago

Physics - Vectors class 11​

Attachments:

Answers

Answered by xXItzUrMajnu01Xx
8

Answer :-

The Angle Between A and B is 150°

Explanation:

Given :-

\sf{•|R|=\frac{|\vec{B}|}{2}}

\sf{•\frac{|R|}{|\vec{B}|}=\frac{\vec{1}}{2}}

\sf{•\vec{R}\perp {\vec{A}}}

To Find :-

The angle between A and B

Solution :-

In OXY

\sf{\cos \theta= \frac{\vec{R}}{\vec{B}}=\frac{1}{2}}

\qquad\sf{\boxed{\blue{\theta = 60°}}}

Thus Angle Between A & B is :-

</p><p>\: \: \sf{\large{\boxed{90+60=\bold{\red{150°}}}}}

Henceforth the angle between A & B is 150°

Attachments:
Answered by ItzzSnake
7

magnitude of resultant of A and B is given by,

 \sf{R =  \sqrt{ (A² + B² + 2AB  \: cos \theta) }}

Question's Concept:-

Magnitude of resultant = half of Magnitude of B

 \sf{  \sqrt{ (A² + B² + 2A.B \: cos \theta) =  \dfrac{B}{2}  }}

Taking square both sides,

➢ \:  \sf{A² + B² + 2A.B \: cos \theta =   \dfrac{  B²}{4} }

➢ \:  \sf{A² + 2AB \: cos \theta +  \dfrac{3B²}{4}= 0 \xrightarrow{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }(1)}

Also, A and R is perpendicular upon each other ,

➟ \:  \sf{A.(A + B) = 0}

➟ \:  \sf{A.A + A.B = 0}

➟ \:  \sf{A² + A.B \: cos \theta = 0}

 \bigstar\boxed{ \sf{cos \theta= -  \dfrac{A}{B}  , put \:  it \:  in \:  equation  \: (1)}} \bigstar

➸ \:  \sf{A² + 2A.B \bigg(- \dfrac{A}{B}  \bigg) + \dfrac{ 3B²}{4 }= 0}

 ➸ \: \sf{A² - 2A² + \dfrac{ 3B²}{4 }= 0}

➸ \:  \sf{ A =  \dfrac{ \sqrt{ 3B}}{2 }}

➸ \:  \sf{Now, cos \theta = \dfrac{-A}{B}  =  \dfrac{  - \sqrt{ -3B}}{{2B} }=  \dfrac{- \sqrt{3}}{2 }}

➸ \:  \sf{cos \theta= cos150° \implies\theta= 150°}

Hence angle between A and B = 150°

Similar questions