Math, asked by richuriz06, 1 day ago

∫pi/2 0 root of sinx​ cosx dx​

Attachments:

Answers

Answered by vs9544334
0

Step-by-step explanation:

Let I=∫

0

2

π

sinx

+

cosx

sinx

dx ...(i)

→=∫

0

2

π

sin(

2

π

−x)

+

cos(

2

π

−x)

sin(

2

π

−x)

dx

[∵∫

a

b

f(x)dx=∫

a

b

f(a+b−x)dx]

⇒I=∫

0

2

π

cosx

+

sinx

cosx

dx ...(ii)

On adding Equation (i) and (ii), we get

⇒2I=∫

0

2

π

sinx

+

cosx

sinx

+

cosx

dx

⇒2I=∫

0

2

π

1dx⇒2I=[x]

0

2

π

⇒2I=

2

π

⇒I=

4

π

Similar questions