Math, asked by Anonymous, 1 day ago

Picture is attachment!!

If anyone good in physics please answer!!

Don't spam!! ​

Attachments:

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-4}}

Mass of bullet, m = 10g = 0.01 kg

Initial velocity, u = 300 m/ sec

Distance covered, s = 3 cm = 0.03 m

Since, bullet comes to rest.

So, Final velocity, v = 0

We know,

\rm :\longmapsto\: {v}^{2} -  {u}^{2} = 2as

\rm :\longmapsto\: {0}^{2} -  {300}^{2} = 2a(0.03)

\rm :\longmapsto\:  - 90000 = 0.06a

\bf\implies \:a =  - \dfrac{90000}{0.06}  = 1500000 \: m {sec}^{ - 2} (numerically)

Now, we know

\red{\rm :\longmapsto\:Force = m  \times a \: }

\red{\rm :\longmapsto\:Force = 0.01  \times 1500000 \: }

\red{\rm \implies\:Force =  15000 \: N\: }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\sf{Solution-5}}

Given that, Forces of

\sf\:5 \sqrt{2}N \: and \: 6 \sqrt{2}N \: act \: on \: a \: particle \: at \: an \: angle \: of \: 60 \degree

Let assume that

\red{\rm :\longmapsto\:F_1 = 5 \sqrt{2}  \: N}

\red{\rm :\longmapsto\:F_2 = 6 \sqrt{2}  \: N}

So, resultant force, F is given by

\boxed{\tt{ F =  \sqrt{ {F_1}^{2} +  {F_2}^{2}  + 2F_1F_2 \: cos \theta}}}

\rm :\longmapsto\: F =  \sqrt{ {(5 \sqrt{2} )}^{2} +  {(6 \sqrt{2} )}^{2}  + 2(5 \sqrt{2})(6 \sqrt{2}) \: cos 60 \degree}

\rm :\longmapsto\:F =  \sqrt{50 + 72 + 2 \times 60 \times  \dfrac{1}{2} }

\rm :\longmapsto\:F =  \sqrt{122 +  60  }

\rm :\longmapsto\:F =  \sqrt{182}

\bf\implies \:F = 13.49 N

Now, Given that

Mass = 1000 kg

We know,

Acceleration is given by

\red{\rm :\longmapsto\:a = \dfrac{F}{m} }

\red{\rm :\longmapsto\:a = \dfrac{13.49 }{1000} }

\red{\rm :\longmapsto\:a = 0.01349   \: m  \: {sec}^{ - 2} }

Similar questions