Math, asked by duragpalsingh, 3 months ago

#PieDay

Prove that.
\pi = 4\int_0^1 \sqrt{1-x^2} dx

Answers

Answered by ExploringMathematics
8

\bigstar\:\rm{We\:need\:to\:prove\:that\::\pi=4 \int_{0}^{1} \sqrt{1-x^{2}} d x}\longrightarrow\rm{4 \int_{0}^{1} \sqrt{1-x^{2}} d x=\pi}

\longrightarrow\rm{4 \int_{0}^{1} \sqrt{1-x^{2}} d x=4\left[\frac{1}{2}\left(\sin ^{-1} x+x \sqrt{1-x^{2}}\right)\right]_{0}^{1}}

\rm{...\:Since \int \sqrt{1-x^{2}} d x=\frac{1}{2}\left[\sin ^{-1} x+x \sqrt{1-x^{2}}\right]+C}

\textsf{Find the calculation of $\rm{\int \sqrt{1-x^{2}} d x}$ at bottom of the answer}

\longrightarrow\rm{4 \int_{0}^{1} \sqrt{1-x^{2}} d x=2\left[\left(\sin ^{-1} 1+(1) \sqrt{1-(1)^{2}}\right)-\left(\sin ^{-1} 0+(0) \sqrt{1-(0)^{2}}\right)\right]}

\longrightarrow\rm{4 \int_{0}^{1} \sqrt{1-x^{2}} d x=2[\pi/2]=\pi\quad...\:Hence\:Proved!}

\rule{315}{2}

\bigstar\:\rm{Calculation\: of\: \int \sqrt{1-x^{2}} d x}

\longrightarrow\rm{\int \sqrt{1-x^{2}} d x=\int \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta}

\rm{...\:Putting\:x=\sin\theta\implies1=\cos \theta \cdot d \theta/d x\implies d x=\cos \theta \cdot d \theta}

\longrightarrow\rm{\int \sqrt{1-x^{2}} d x=\int \sqrt{\cos ^{2} \theta} \cos \theta d \theta}

\longrightarrow\rm{\int \sqrt{1-x^{2}} d x=\int \cos \theta\times \cos \theta\: d \theta=\int \cos^2 \theta d \theta}

\longrightarrow\rm{\int \sqrt{1-x^{2}} d x=\int (1+\cos 2 \theta)/2 \:d \theta\quad...\:Since\:\cos 2 x=2 \cos ^{2} x-1}

\longrightarrow\rm{\int \sqrt{1-x^{2}} d x=1/2 \int(1+\cos 2 \theta) d \theta=1/2\left[\theta+(\sin 2 \theta)/2\right]+C}

\longrightarrow\rm{\int \sqrt{1-x^{2}} d x=1/2\left[\sin ^{-1} x+\frac{\sin \left(2 \sin ^{-1} x\right)}{2}\right]+C\quad\because\:x=\sin \theta \Rightarrow \theta=\sin ^{-1} x}

\longrightarrow\rm{\int \sqrt{1-x^{2}} d x=1/2\left[\sin ^{-1} x+\frac{\sin \left(\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)\right)}{2}\right]+C\:\because 2 \sin ^{-1} x=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)}

\longrightarrow\rm{\int \sqrt{1-x^{2}} d x=1/2\left[\sin ^{-1} x+\frac{2 x \sqrt{1-x^{2}}}{2}\right]+C=1/2\left[\sin ^{-1} x+x \sqrt{1-x^{2}} \mid+C\right.}

Answered by mathdude500
12

 \bf \: Prove  \: that :  \: \pi = 4\int_0^1 \sqrt{1-x^2} dx

\large\underline{\bold{Solution-}}

Consider, RHS

 \tt \:I =   4\int_0^1 \sqrt{1-x^2} dx -  -  - (1)

To evaluate this integral, we use method of Substitution.

So,

 \tt \: Put \: x =  \: siny \:  -  -  - (2)

 \therefore \:  \:  \:  \tt \: \dfrac{dx}{dy}  = cosy

 \tt \: dx = cosy \: dy \:  -  -  - (3)

Now limits changes to

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf x = siny \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf 1 & \sf \dfrac{\pi}{2}  \end{array}} \\ \end{gathered}

Now, Substitute all these values in equation (1), we get

 \tt \: I =  4\int_0^ \frac{\pi}{2}  \sqrt{1-(siny)^2}  \: cosy \: dy

 \tt \: I =  4\int_0^ \frac{\pi}{2}  \sqrt{(cosy)^2}  \: cosy \: dy

 \tt \: I =  4\int_0^ \frac{\pi}{2}   \:  {cos}^{2}y  \: dy

 \tt \: I =  2\int_0^ \frac{\pi}{2}   \:  2{cos}^{2}y  \: dy

 \tt \: I =  2\int_0^ \frac{\pi}{2}  (1 + cos2y)  \: dy

 \tt \: I =2 \bigg(y + \dfrac{sin2y}{2}  \bigg)_0^ \dfrac{\pi}{2}

 \tt \: I = 2\bigg(\dfrac{\pi}{2}    +  \dfrac{sin\pi}{2} \bigg)

 \tt \: I = 2\bigg( \dfrac{\pi}{2}  - 0\bigg)

 \tt \: I = \pi

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

 \boxed{ \tt{ \int \: sinx \: dx =  -  \: cosx \:  +  \: c}}

 \boxed{ \tt{ \int \: cosx \: dx = sinx \:  +  \: c}}

 \boxed{ \tt{ \int \:  {sec}^{2}x  \: dx = tan \: x \:  +  \: c}}

 \boxed{ \tt{ \int \:  {cot}^{2} x \: dx =  - \:  cosecx \:  +  \: c}}

Similar questions