Math, asked by duragpalsingh, 21 days ago

#PieDay
Prove the given integral.

\displaystyle\int_{-1}^1 \dfrac{dx}{\sqrt{1-x^2}} = \pi

Answers

Answered by shadowsabers03
42

We know that,

\displaystyle\longrightarrow\int\dfrac{dx}{\sqrt{1-x^2}}=\sin^{-1}x

So,

\displaystyle\longrightarrow\int\limits_{-1}^1\dfrac{dx}{\sqrt{1-x^2}}=\left[\sin^{-1}x\right]_{-1}^1

\displaystyle\longrightarrow\int\limits_{-1}^1\dfrac{dx}{\sqrt{1-x^2}}=\sin^{-1}(1)-\sin^{-1}(-1)

\displaystyle\longrightarrow\int\limits_{-1}^1\dfrac{dx}{\sqrt{1-x^2}}=\dfrac{\pi}{2}-\left(-\dfrac{\pi}{2}\right)

\displaystyle\longrightarrow\underline{\underline{\int\limits_{-1}^1\dfrac{dx}{\sqrt{1-x^2}}=\pi}}

OR

Let us be given to find,

\displaystyle\longrightarrow I=\int\limits_{-1}^1\dfrac{dx}{\sqrt{1-x^2}}

Put,

\longrightarrow x=\sin\theta

\longrightarrow dx=\cos\theta\ d\theta

\longrightarrow x=-1\quad\implies\quad\theta=-\dfrac{\pi}{2}

\longrightarrow x=1\quad\implies\quad\theta=\dfrac{\pi}{2}

Then the integral becomes,

\displaystyle\longrightarrow I=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dfrac{\cos\theta\ d\theta}{\sqrt{1-\sin^2\theta}}

\displaystyle\longrightarrow I=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dfrac{\cos\theta\ d\theta}{\cos\theta}

\displaystyle\longrightarrow I=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta

\displaystyle\longrightarrow I=\Big[\theta\Big]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}

\displaystyle\longrightarrow I=\dfrac{\pi}{2}-\left(-\dfrac{\pi}{2}\right)

\displaystyle\longrightarrow\underline{\underline{I=\pi}}

Answered by Anonymous
1

Answer:

correct answers please mark brainliest

Attachments:
Similar questions