Pierre used to boast that he didn't need reins -he never touched them . what are rein used for. Why did pierre not need them . Think a little -when did pierre say it.
Answers
Explanation:
\red{Centroid(G)= \big(2,\frac{2}{3}\big)}Centroid(G)=(2,
3
2
)
\begin{gathered}\green{\begin{gathered}The\: coordinates \: of \\ the \: mid\:point \:of \: the \: sides \\of\:a\:triangle\:are\\ (1,1),(2,-3)\:and\:(3,4)\end{gathered}}\end{gathered}
Thecoordinatesof
themidpointofthesides
ofatriangleare
(1,1),(2,−3)and(3,4)
\begin{gathered}\orange{\begin{gathered}x_{1}=1,y_{1}=1;\\x_{2}=2,y_{2}=-3;\\x_{3}=3,y_{3}=4\end{gathered}}\end{gathered}
x
1
=1,y
1
=1;
x
2
=2,y
2
=−3;
x
3
=3,y
3
=4
\begin{gathered}\blue{\begin{gathered}Now,\\Centroid (G)=\big(\frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3}\big)\end{gathered}}\end{gathered}
Now,
Centroid(G)=(
3
x
1
+x
2
+x
3
,
3
y
1
+y
2
+y
3
)
\begin{gathered}\red{\begin{gathered}=\big(\frac{1+2+3}{3},\frac{1-3+4}{3}\big)\\=\big(\frac{6}{3},\frac{2}{3}\big)\\=\big(2,\frac{2}{3}\big)\end{gathered}}\end{gathered}
=(
3
1+2+3
,
3
1−3+4
)
=(
3
6
,
3
2
)
=(2,
3
2
)
Therefore,
\pink{Centroid(G)= \big(2,\frac{2}{3}\big)}Centroid(G)=(2,
3
2
)