pl answer with proper steps!!
Attachments:
Answers
Answered by
0
We are given that radiation of wavelength 230 nm ionizes one Lithium Atom.
We need Energy corresponding to photon of that wavelength:
\begin{lgathered}c = f\lambda \\ \\ \implies f = \frac{c}{\lambda}\end{lgathered}c=fλ⟹f=λc
Here,
c = Speed of light in vacuum = 3\times 10^8 \, \, m/s3×108m/s
f = Frequency
\lambdaλ = Wavelength = 230 nm = 230 \times 10^{-9} \, \, m230×10−9m
Now, we have:
\begin{lgathered}E = hf \\ \\ \implies E = \frac{hv}{\lambda}\end{lgathered}E=hf⟹E=λhv
Here,
h = Planck's Constant = 6.626\times 10^{-34} \, \, J s6.626×10−34Js
This formula gives us the Energy required to ionize one Lithium Atom.
We need Ionization Enthalpy, which is measured in kJ / mol.
So, we need the energy to ionize one mole of Lithium Atoms.
Since One Atom takes energy E, one mole of Lithium Atoms would have the Ionization Energy of:
I_E = N_A \times EIE=NA×E
Where
N_ANA = Avogadro Number = 6.022 \times 10^{23}6.022×1023
We can finally find the ionisation enthalpy:
\begin{lgathered}I_E = N_A \times E \quad and \quad E = \frac{hc}{\lambda} \\ \\ \\ \implies I_E = N_A \times \frac{hc}{\lambda} \\ \\ \\ \implies I_E = (6.022 \times 10^{23}) \times \frac{6.626\times 10^{-34} \times 3 \times 10^8}{230 \times 10^{-9}} \, \, \, J / mol \\ \\ \\ \implies I_E \approx 520.46 \times 10^3 \, \, \, J/mol \\ \\ \\ \implies \boxed{I_E \approx 520.46 \, \, \, kJ/mol}\end{lgathered}IE=NA×EandE=λhc⟹IE=NA×λhc⟹IE=(6.022×1023)×230×10−96.626×10−34×3×108J/mol⟹IE≈520.46×103J/mol⟹IE≈520.46kJ/mol
Thus, The Ionization Enthalpy/Energy of Lithium is 520.46 kJ/mol
So, the Answer is Option a) 520
We need Energy corresponding to photon of that wavelength:
\begin{lgathered}c = f\lambda \\ \\ \implies f = \frac{c}{\lambda}\end{lgathered}c=fλ⟹f=λc
Here,
c = Speed of light in vacuum = 3\times 10^8 \, \, m/s3×108m/s
f = Frequency
\lambdaλ = Wavelength = 230 nm = 230 \times 10^{-9} \, \, m230×10−9m
Now, we have:
\begin{lgathered}E = hf \\ \\ \implies E = \frac{hv}{\lambda}\end{lgathered}E=hf⟹E=λhv
Here,
h = Planck's Constant = 6.626\times 10^{-34} \, \, J s6.626×10−34Js
This formula gives us the Energy required to ionize one Lithium Atom.
We need Ionization Enthalpy, which is measured in kJ / mol.
So, we need the energy to ionize one mole of Lithium Atoms.
Since One Atom takes energy E, one mole of Lithium Atoms would have the Ionization Energy of:
I_E = N_A \times EIE=NA×E
Where
N_ANA = Avogadro Number = 6.022 \times 10^{23}6.022×1023
We can finally find the ionisation enthalpy:
\begin{lgathered}I_E = N_A \times E \quad and \quad E = \frac{hc}{\lambda} \\ \\ \\ \implies I_E = N_A \times \frac{hc}{\lambda} \\ \\ \\ \implies I_E = (6.022 \times 10^{23}) \times \frac{6.626\times 10^{-34} \times 3 \times 10^8}{230 \times 10^{-9}} \, \, \, J / mol \\ \\ \\ \implies I_E \approx 520.46 \times 10^3 \, \, \, J/mol \\ \\ \\ \implies \boxed{I_E \approx 520.46 \, \, \, kJ/mol}\end{lgathered}IE=NA×EandE=λhc⟹IE=NA×λhc⟹IE=(6.022×1023)×230×10−96.626×10−34×3×108J/mol⟹IE≈520.46×103J/mol⟹IE≈520.46kJ/mol
Thus, The Ionization Enthalpy/Energy of Lithium is 520.46 kJ/mol
So, the Answer is Option a) 520
kishankumar81:
make me as brqinlist
Similar questions