Math, asked by chirag1038, 11 months ago

pl solve 12 question on a note book and attach pic of that pl​

Attachments:

Answers

Answered by Grimmjow
5

\mathsf{Given :\;\;\dfrac{sec\theta + tan\theta - 1}{tan\theta - sec\theta + 1}}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{sec^2\theta - tan^2\theta = 1}}}

\mathsf{\implies \dfrac{(sec\theta + tan\theta) - [sec^2\theta - tan^2\theta]}{tan\theta - sec\theta + 1}}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{a^2 - b^2 = (a + b)(a - b)}}}

\mathsf{\implies \dfrac{(sec\theta + tan\theta) - [(sec\theta + tan\theta)(sec\theta - tan\theta)]}{tan\theta - sec\theta + 1}}

\mathsf{Taking\;(sec\theta + tan\theta)\;common\;in\;the\;numerator,\;We\;get :}

\mathsf{\implies \dfrac{(sec\theta + tan\theta)[1 - (sec\theta - tan\theta)]}{tan\theta - sec\theta + 1}}

\mathsf{\implies \dfrac{(sec\theta + tan\theta)[1 - sec\theta + tan\theta]}{tan\theta - sec\theta + 1}}

\mathsf{\implies sec\theta + tan\theta}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{sec\theta = \dfrac{1}{cos\theta}}}}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{tan\theta = \dfrac{sin\theta}{cos\theta}}}}

\mathsf{\implies \dfrac{1}{cos\theta} + \dfrac{sin\theta}{cos\theta}}

\mathsf{\implies \dfrac{1 + sin\theta}{cos\theta}}

\mathsf{Multiplying\;both\;Numerator\;and\;Denominator\;with\;(1 - sin\theta),\;We\;get :}

\mathsf{\implies \dfrac{(1 + sin\theta)(1 - sin\theta)}{cos\theta(1 - sin\theta)}}

\mathsf{\implies \dfrac{1 - sin^2\theta}{cos\theta(1 - sin\theta)}}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{1 - sin^2\theta = cos^2\theta}}}

\mathsf{\implies \dfrac{cos^2\theta}{cos\theta(1 - sin\theta)}}

\mathsf{\implies \dfrac{cos\theta}{1 - sin\theta}}


chirag1038: thanks bro
Grimmjow: You're Welcome! ^_^
Similar questions