Math, asked by rubashrijayakumar, 1 month ago

pl tell the answer for the attached photo​

Attachments:

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

 \left|  \dfrac{2}{x - 4}  \right|  > 1

  \implies  \dfrac{2}{ | x - 4 | }  > 1

  \implies  \dfrac{ | x - 4 | }{2}   <  1

  \implies   | x - 4 |   <  2

  \implies   | x - 4 |^{2}    <  (2) ^{2}

  \implies    x^{2} - 8x   + 16    <  4

  \implies    x^{2} - 8x   + 12    <  0

  \implies    x^{2} - 6x - 2x   + 12    <  0

  \implies    x(x- 6)- 2(x   - 6)    <  0

  \implies    (x - 2)(x- 6) <  0

  \implies    x \in ( 2 ,6)

Answered by mathdude500
5

\large\underline{\sf{Given \:Question - }}

Solve :-

\rm :\longmapsto\:\bigg |\dfrac{2}{x - 4} \bigg| > 1 \: and \: x  \: \ne \: 4

 \green{\large\underline{\sf{Solution-}}}

Given inequality is

\rm :\longmapsto\:\bigg |\dfrac{2}{x - 4} \bigg| > 1 \: and \: x  \: \ne \: 4

We know,

\begin{gathered}\begin{gathered}\bf\:  |x|  = \begin{cases} &\sf{ - x \:  \:  \: when \: x < 0} \\ &\sf{ \:  \:  \: x \:  \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So,

\rm :\longmapsto\:\dfrac{2}{ |x - 4| } > 1

\rm :\longmapsto\:\dfrac{ |x - 4| }{2} < 1

\rm :\longmapsto\: |x - 4|  < 2

\rm :\longmapsto\: - 2 < x - 4 < 2

On adding 4 in each term, we get

\rm :\longmapsto\: - 2 + 4 < x - 4 + 4 < 2 + 4

\rm :\longmapsto\:2 < x < 6 \:  \: and \:  \: x \:  \ne \: 4

\rm \implies\:x \:  \in \: (2,4) \:  \cup \: (4,6)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\boxed{\tt{  |x| < y \:  \: \rm \implies\: - y < x < y \: }}

\boxed{\tt{  |x|  \leqslant  y \:  \: \rm \implies\: - y  \leqslant  x  \leqslant  y \: }}

\boxed{\tt{  |x| > y \:  \: \rm \implies\:x <  - y \:  \: or \:  \: x > y}}

\boxed{\tt{  |x|  \geqslant  y \:  \: \rm \implies\:x  \leqslant   - y \:  \: or \:  \: x  \geqslant  y}}

\boxed{\tt{  |x - z| < y \:  \: \rm \implies\: z- y < x <z +  y \: }}

\boxed{\tt{  |x - z|  \leqslant  y \:  \: \rm \implies\: z- y  \leqslant  x  \leqslant z +  y \: }}

Similar questions