Physics, asked by gsubrata1445, 8 months ago

Placement of a particle is given by X equal to 20
+ 10t² square calculate the instantaneous velocity t=2s

Answers

Answered by Anonymous
41

Answer:

 \boxed{\mathfrak{Instantaneous \ velocity \ (v) = 40 \ m/s}}

Explanation:

Relation between displacement of particle w.r.t. time is given as:

x = 20 + 10t²

Rate of change of displacement of particle w.r.t. time gives Instantaneous velocity:

 \rm \implies v =  \dfrac{dx}{dt}  \\  \\  \rm \implies v =  \dfrac{d}{dt} (20 + 10 {t}^{2} ) \\  \\  \rm \implies v = 20t

Instantaneous velocity at t = 2s:

 \rm \implies v = 20 \times 2 \\  \\  \rm \implies v = 40 \: m {s}^{ - 1}

Answered by DARLO20
119

\bf{\blue{\underline{\underline{\pink{GIVEN:-}}}}}

  • Displacement of a particle is given by X .

  • X = 20 + 10t² .

\bf{\blue{\underline{\underline{\pink{TO\: FIND:-}}}}}

  • The instantaneous velocity at t = 2s .

\bf{\blue{\underline{\underline{\pink{SOLUTION:-}}}}}

We have know that,

  • Instantaneous velocity\bf\pink{\dfrac{dX}{dt}\:}

\rm{\implies\:Velocity_{insta.}\:=\:\dfrac{d(20\:+\:10t^2)}{dt}\:}

\rm{\implies\:Velocity_{insta.}\:=\:\dfrac{d(20)}{dt}\:+\:\dfrac{d(10t^2)}{dt}\:}

\rm{\implies\:Velocity_{insta.}\:=\:20\times{\dfrac{d(1)}{dt}}\:+\:10\times{\dfrac{d(t^2)}{dt}}\:}

\rm{\implies\:Velocity_{insta.}\:=\:20\times{0}\:+\:10\times{2t}\:}

\rm{\implies\:Velocity_{insta.}\:=\:0\:+\:10\times{2t}\:}

\rm{\implies\:Velocity_{insta.}\:=20\times{t}\:}

☃️ Now, put the value of “t = 2s”, we get

\rm{\implies\:Velocity_{insta.}\:=\:20\times{2}\:}

\rm\green{\implies\:Velocity_{insta.}\:=\:40\:m/s}

\rm\pink{\therefore} The instantaneous velocity at t = 2s is “40m/s” .

Similar questions