Physics, asked by keziahjoshy05, 1 day ago

Planet X has 2 times the radius and 2 times the mass of the Earth. What is the best estimate for the magnitude of the gravitational field intensity at the surface of planet X? a) 9.8 m/s2 b) 4.9 m/s2 c) 19.6 m/s2 d) Sufficient data not given​

Answers

Answered by OtakuSama
29

\\\large{\underline{\underline{\sf{\pmb{\purple{Question:}}}}}}

Planet X has 2 times the radius and 2 times the mass of the Earth. What is the best estimate for the magnitude of the gravitational field intensity at the surface of planet X?

  • a) 9.8 m/s^2
  • b) 4.9 m/s^2
  • c) 19.6 m/s^2
  • Sufficient data not given

\\\large{\underline{\underline{\sf{\pmb{\purple{Required \: Answer:}}}}}}

 \\ \underline{\underline{\sf{\tt{Given:}}}}

  • Radius of planet X = 2 times of the Earth
  • Mass of the planet X = 2 times of the Earth.

 \\ \underline{\underline{\sf{\tt{To \: Find:}}}}

  • The gravitational field intensity at the surface of planet X

 \\ \underline{\underline{\sf{\tt{Solution:}}}}

Let us assume that:-

  • Mass of the Earth = m
  • Mass of planet X = M
  • Radius of the Earth = r
  • Radius of planet X = R
  • Gravitational field intensity of the Earth = g
  • Gravitational field intensity of the Earth = g'

We know that:-

  •  \underline{\boxed{\color{navy}{\rm{g  =  \dfrac{GM}{ {R}^{2}}}}}}

Where,

  • g = Gravitational field intensity of a planet
  • G = Gravitational constant
  • M = Mass of the planet
  • R = Radius of the planet

According to the question:-

As for Earth:-

 \\ \sf{\blue{g  =  \dfrac{Gm}{ {r}^{2} } }} -  -  -  -  -  -  -  -  -  -  - (1)

As for planet 'X'

  \\ \sf{\blue{g'  =  \dfrac{GM}{ {R}^{2} } }} -  -  -  -  -  -  -  -  -  -  - (2)

We were given:-

  • Radius of planet X = 2 times of the Earth

Therefore,

  • M = 2m (M = Mass of planet X , m = Mass of the Earth)

Again,

  • Mass of the planet X = 2 times of the Earth.

Therefore,

  • R = 2r (R = Radius of planet X, r = Radius of the Earth)

Now, dividing equation (2) by equation (1) :-

 \\ \sf{\bold{ \dfrac{g'}{g}  =  \dfrac{GM}{ {R}^{2}} \div  \frac{Gm}{ {r}^{2} }     }}

 \\ \sf{\implies{ \dfrac{g'}{g}  =  \dfrac{GM}{ {R}^{2}}  \times  \frac{{r}^{2}}{Gm  }     }}

 \\ \sf{\implies{ \dfrac{g'}{g}  =  \dfrac{G \times 2 \times m}{ {(2 \times r)}^{2}}  \times  \dfrac{{r}^{2}}{Gm  }     }}

 \\ \sf{\implies{ \dfrac{g'}{g}  =  \dfrac{\cancel{G} \times 2 \times \cancel{m}}{ {4\times \cancel{{r}^{2}} }}  \times  \dfrac{\cancel{{r}^{2}}}{\cancel{G}{\cancel{m}}}}}

 \\ \sf{\implies{ \dfrac{g'}{g}  =  \frac{2}{4}}}

 \\ \sf{\implies{ \dfrac{g'}{9.81m {s}^{ - 2} }  =  \frac{2}{4}}}

 \\ \sf{\implies{ g' =  \dfrac{2}{4}  \times 9.81m {s}^{ - 2}}}

 \\ \sf{\therefore{g' = \red{\frak{4.9m {s}^{ - 2}}}}} \\\\\\

Hence, gravitational intensity of planet X is 4.9m/s^2

\\\\\underline{\rm{Hence, option \: \bold{\green{b) 4.9 m/{s}^{2}} \: is \: the \: correct \: option.}}}

Similar questions