Math, asked by yrd, 1 year ago

pleaae someone answer qno. 1

Attachments:

Answers

Answered by siddhartharao77
1
(1)

Given :  \frac{tanA + secA - 1}{tanA - secA + 1}

We know that 1 + tan^2a = sec^2a = >  tan^2a - sec^2a = -1.

= \ \textgreater \   \frac{tanA + secA + (tan^2A - sec^2A) }{tanA - secA + 1}

= \ \textgreater \   \frac{tanA + secA + (tanA + secA)(tanA - secA)}{(tanA - secA + 1)}

= \ \textgreater \   \frac{tanA + secA(1 + tanA - secA)}{(tanA -secA + 1)}

= \ \textgreater \  tanA + secA

= \ \textgreater \   \frac{sinA}{cosA} +  \frac{1}{cosA}

= \ \textgreater \   \frac{1 + sinA}{cosA}



Hope this helps!

siddhartharao77: :-)
yrd: thanks
siddhartharao77: Welcome
Answered by Anonymous
1
Hi,

Please see the attached file!



Thanks
Attachments:
Similar questions