Math, asked by pshahnaz599, 11 months ago

.pleas answer to 7,8question​

Attachments:

Answers

Answered by sb93
0

Step-by-step explanation:

Both can be found using Pythagorous theorem :

Q7.

To find breadth of the rectangle

\implies \sf{H^2=P^2+B^2 }

\implies \sf{41^2=P^2+40^2 }

\implies \sf{P^2=1681 - 1600 }

\implies \sf{P^2=81 }

\implies \sf{P=\sqrt{81} }

\implies \sf{P=9 }

\implies \sf{Perpendicular=breadth=9cm }

To find Perimeter of the triangle :

\implies \sf{P=2(l+b) }

\implies \sf{P=2(40+9) }

\implies \sf{P=2(49) }

\implies \boxed{\sf{Perimeter=98cm} }

Q8.

Diagonals of Rhombus bisect each other

\therefore \sf{d_1=8+8 ; d_2=15+15 }

\implies \sf{H^2=P^2+B^2 }

\implies \sf{H^2=15^2+8^2 }

\implies \sf{H^2=225+64 }

\implies \sf{H=\sqrt{289} }

\implies \sf{H=17cm }

\implies \sf{Hypotenuse=Side=a=17cm }

To find Perimeter of Rhombus :

\implies \sf{P=4a }

\implies \sf{P=4(17) }

\implies \boxed{\sf{Perimeter=68cm} }

_______________________________________

<b><i><marquee> Mark as Brainliest :)

Answered by Anonymous
20

ANSWER 7:-

Given:

In a rectangle;

  • Length,l=40cm
  • Diagonal,d= 41cm

To find:

The perimeter of rectangle.

Explanation:

We know that, diagonal of a rectangle divides it into two right angled Δ.

So,

Using Pythagoras Theorem:

[Diagonal]²= [Length]² +[Breadth]²

⇒ (41)² = (40)² +(b)²

⇒ 1681= 1600+ (b)²

⇒ b² = 1681-1600

⇒ b²= 81

⇒ b= √81

⇒ b= 9cm.

We know that formula of the perimeter of rectangle: 2[length+breadth]

⇒ Perimeter of rectangle= 2[40cm+ 9cm]

⇒ Perimeter of rectangle= 2[49cm]

⇒ Perimeter of rectangle= 98cm.

________________________________________________________________

ANSWER 8:-

Given:

The diagonal of a rhombus measure 16cm and 30cm.

To find:

The perimeter of rhombus.

Explanation:

Rhombus: A rhombus is a type of parallelogram. and its shape is that all four of its sides are congruent.

We know that diagonal of rhombus bisect 90° to each other.

We have,

  • Diagonal,d1= 16cm or 16/2 = 8cm
  • Diagonal,d2= 30cm or 30/2= 15cm

Using Pythagoras Theorem:

[Hypotenuse]² = [Base]² + [Perpendicular]²

⇒ (side)² = (d1)² +(d2)²

⇒ (side)² = (8)² + (15)²

⇒ (side)² = 64+ 225

⇒ (side)² = 289

⇒ side= √289

⇒ side= 17cm.

Thus,

We know that perimeter of rhombus= 4× side

Perimeter of rhombus= [4×17]cm

Perimeter of rhombus= 68cm.

Similar questions