Math, asked by sanjanakaval, 10 months ago

pleas explain in detail​

Attachments:

Answers

Answered by ss141309
1

Answer:

\frac{33}{611}

Step-by-step explanation:

Given that   \sin\theta=\frac{15}{17}  ⇒  \sin^2\theta=(\frac{15}{17})^2=\frac{225}{289}  

We also know that:

\sin^2\theta+\cos^2\theta=1\\

\cos^2\theta=1-\sin^2\theta

\cos^2\theta=1-\frac{225}{289}

\cos^2\theta=\frac{64}{289}

Substituting the values of \sin^2\theta and \cos^2\theta in the given question:

\frac{3-4\cdot(\frac{225}{289} )}{4\cdot(\frac{64}{289} )-3}

= \frac{\frac{-33}{289} }{\frac{-611}{289} }

We know that  \frac{\frac{a}{b} }{\frac{m}{n} } =\frac{an}{bm}

= \frac{-33\cdot289}{-611\cdot289}

= \frac{33}{611}             Answer

Answered by sprao53413
1

Answer:

Please see the attachment

Attachments:
Similar questions