Math, asked by akashvarma9631, 1 month ago

please
3x-2y=4
2x+3y=1 Elimination method ​

Answers

Answered by BlessedOne
49

Given :

  • \sf\:3x-2y=4 -- \small\fbox{1}

  • \sf\:2x+3y=1 -- \small\fbox{2}

To find :

  • The value of x and y

Solution :

Given two equations :

  • \sf\:3x-2y=4 -- \small\fbox{1}

  • \sf\:2x+3y=1 -- \small\fbox{2}

As we notice the coefficient of x are not same , therefore multiplying equation 1 by 2 and equation 2 by 3 .

  • \sf\:3x-2y=4 -- \small\fbox{1} × 2

  • \sf\:2x+3y=1 -- \small\fbox{2} × 3

After multiplication -

  • \sf\:6x-4y=8 -- \small\fbox{3}

  • \sf\:6x+9y=3 -- \small\fbox{4}

Subtracting equation 4 from equation 3 -

\sf\:Equation~3~-~Equation~4~

\sf\implies\:6x-4y-(6x+9y)=8-3

Multiplying the signs and removing the brackets

\sf\implies\:6x-4y-6x-9y=8-3

Arranging the terms

\sf\implies\:6x-6x-4y-9y=8-3

Number with opposite signs gets cancelled

\sf\implies\:\cancel{6x}-\cancel{6x}-4y-9y=8-3

\sf\implies\:-4y-9y=8-3

Proceeding with simple calculations

\sf\implies\:-13y=8-3

\sf\implies\:-13y=5

Transposing -13 to RHS it goes to the denominator

\sf\implies\:y=\frac{5}{-13}

\small{\underline{\boxed{\mathrm{\implies\:y\:=\:(\frac{-5}{13})}}}} \bf\color{red}{⋆}

Substituting the value of y in equation 1 -

\sf\:3x-2y=4 -- \small\fbox{1}

\sf\implies\:3x-2(\frac{-5}{13})=4

Multiplying the numbers

\sf\implies\:3x-(\frac{-10}{13})=4

Multiplying the signs and removing the brackets

\sf\implies\:3x+\frac{10}{13}=4

LCM of 1 and 13 = 13

\sf\implies\:\frac{(3x \times 13) + (10 \times 1)}{13}=4

\sf\implies\:\frac{39x + 10}{13}=4

Cross multiplying

\sf\implies\:39x+10=13 \times 4

\sf\implies\:39x+10=52

Transposing +10 to RHS it becomes -10

\sf\implies\:39x=52-10

\sf\implies\:39x=42

Transposing 39 to RHS it goes to the denominator

\sf\implies\:x=\frac{42}{39}

\small{\underline{\boxed{\mathrm{\implies\:x\:=\:\frac{42}{39}}}}} \bf\color{red}{⋆}

Verification :

Plugging both the values of x and y in equation 1 -

\sf\:3x-2y=4 -- \small\fbox{1}

\sf\twoheadrightarrow\:3(\frac{42}{39})-2(\frac{-5}{13})=4

Multiplying the numbers

\sf\twoheadrightarrow\:\frac{126}{39}-(\frac{-10}{13})=4

Multiplying the signs and removing brackets

\sf\twoheadrightarrow\:\frac{126}{39}+\frac{10}{13}=4

LCM of 39 and 13 = 39

\sf\twoheadrightarrow\:\frac{(126 \times 1) + ( 10 \times 3)}{39}=4

\sf\twoheadrightarrow\:\frac{126+30}{39}=4

Cross multiplying

\sf\twoheadrightarrow\:126+30=4 \times 39

\sf\twoheadrightarrow\:156=156

\bf\twoheadrightarrow\:LHS~=~RHS

Hence Verified !~

════════════════════

Henceforth :

\sf\:~~~~~~~~~~~~~ \bf\color{maroon}{★} x = \large{\mathfrak{\frac{42}{39}}}

\sf\:~~~~~~~~~~~~~ \bf\color{maroon}{★} y = \large{\mathfrak{\frac{-5}{13}}}

Answered by mandal2002shayan
73

Step-by-step explanation:

please look into the attached image for the answer hope it will help you!

Attachments:
Similar questions