Math, asked by nxelgeorge14, 1 month ago

please anewer the question attached here ​

Attachments:

Answers

Answered by abishek2981
1

Step-by-step explanation:

(1+tan)(1-tan+tan^2)/(1+tan) +tan -sec^2

1-tan +tan^2 +tan -sec^2

0 because

sec^2-tan^2 =1 I can't write theeta

a^3 +b^3 =(a+b)(a^2-ab+b^2)

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

To  \: prove  =  \\  \frac{1 + tan {}^{3} θ}{1 + tan.θ}  + tanθ - sec {}^{2} θ = 0 \\  \\ let \: then \: LHS =  \frac{1 + tan {}^{3}θ }{1 + tanθ} + tanθ - sec {}^{2} θ \\  \\ RHS = 0 \\ considering \: LHS \\  =  \frac{1 + tan {}^{3} θ}{1 + tanθ}  + tanθ - sec {}^{2} θ \\  \\  =  \frac{(1) {}^{3}  + tan {}^{3} θ}{1 + tanθ} + tanθ -  sec {}^{2} θ \\   \\ so \: here \: (1) {}^{3}  + tan {}^{3} θ \: is \: in \: a {}^{3}  + b {}^{3}  \\ so \: we \: know \: that \\ a {}^{3}  + b {}^{3}  = (a + b)(a {}^{2}  + b {}^{2}  - ab) \\  \\ hence \: accordingly \\  =  \frac{(1 + tan \: θ)(1 + tan {}^{2} θ - tan \: θ)}{1 + tan \:θ }  + tan θ - sec {}^{2} θ \\  \\  = 1 + tan {}^{2} θ - tanθ + tanθ - sec {}^{2} θ \\  = sec {}^{2} θ - sec {}^{2} θ \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \: (1 + tan {}^{2} θ = sec {}^{2} θ) \\   \\ = 0 \\ hence \: LHS=RHS \\ thus \: proved

Similar questions