Math, asked by JinKazama1, 1 year ago

Please Annswer Q:5
Solve above Differential Equation :
No spamming Content Quality Required ::::

Attachments:

Answers

Answered by Swarup1998
8
The answer is given in the attachment.

Thank you for your question.
Attachments:

Nikki57: Thanks ^_°
Answered by Yuichiro13
9
_____________________________________________________________


♦ Ordinary Differential Equations ♦
◙ Bernoulli ODE ◙

→ First Order Bernoulli ODE has the form : y' + p( x )y = q( x )yⁿ 
    • p( x ) and q( x ) are continuous functions and n ∈ R

→ Solving Bernoulli involves subtituting v = y¹⁻ⁿ , so we use that in our                   solution.
_____________________________________________________________

→ THE ATTACHMENT TO BE REFERRED : 

    • General Solution for the First Order Linear ODE is given by : 

y(x) = \frac{ \int\limits {e^{ \int\limits {p(x)} \, dx }} \ q(x) \, dx \ + \ C }{e^{ \int\limits {p(x)} \, dx }}   
    
   → where p( x ), q( x ) have their usual representation when the ODE is                written in the simplest form.

 __________________________________________________________

\ \textgreater \ y(x)= \sqrt{x^2 \ ( 2 \ sin ( x^2 ) + C ) } \\ \\ At \ x = \sqrt{\frac{ \pi }{2} } : \\ \\ \ \textgreater \ y( x) = \sqrt{ \frac{ \pi }{2}( 2 \ sin \frac{ \pi }{2} + C ) } \\ \\ \ \textgreater \ \sqrt{ \pi } = \sqrt{\frac{ \pi }{2}} \sqrt{( 2 + C )}

→ Just work up with the Algebra and you get : C = 0

____________________________________________________________

♦Result :      

y( x) = \sqrt{ x^2 ( 2 \ sin (x^2) ) }

____________________________________________________________

→ For further details on Bernoulli ODE's :   ♦ http://tutorial.math.lamar.edu/Classes/DE/Bernoulli.aspx  

  • The website above mentioned 0_0 gives an insight into all sorts of ODE's and their generalized Problem Solving Methods    

 ♦ http://mathworld.wolfram.com/BernoulliDifferentialEquation.html 
_____________________________________________________________

^_^ Hope it helps !
Attachments:

Nikki57: Thanks !
Similar questions