Math, asked by summi12e, 2 months ago

please ans correctly please​

Attachments:

Answers

Answered by jeevithakiri9
4

Step-by-step explanation:

1)First substitute

2)Use formula

3) Arrange them by suitable formula

4) Simplify

Then, you will get answer

Attachments:
Answered by GeniusGirl19
0

Answer:

cosθ = p+1

hence proved

Step-by-step explanation:

given :

  Cosecθ + cotθ = p

to prove

      cosθ = p+1

solution:

R.H.S

     = p+1

     = (Cosecθ + cotθ)^2 -1/(Cosecθ + cotθ)^2 + 1

     = Cosec^2θ + cot^2θ+ 2 cosecθ cotθ -1÷

                          Cosec^2θ + cot^2θ+ 2 cosecθ cotθ+1

    = Cosec^2θ-1 + cot^2θ+ 2 cosecθ cotθ ÷

                          Cosec^2θ +  cot^2θ +1 + 2 cosecθ cotθ

    =  cot^2θ + cot^2θ+ 2 cosecθ cotθ÷

                           Cosec^2θ + Cosec^2θ + 2 cosecθ cotθ

    =2cot^2θ+ 2 cosecθ cotθ÷

                           2 Cosec^2θ+ 2 cosecθ cotθ

    =2 cotθ( cotθ+cosecθ) ÷

                         2cosecθ(cosecθ+cotθ)

   =cosθ÷sinθ / 1 ÷ sinθ

   = cosθ/1

   =cosθ

   =L.H.S

hence proved

#SPJ2

Similar questions