please ans me fast....its urgent
Attachments:
Answers
Answered by
3
[[[[[Should be]]]]]
If a cos∅ - b sin∅ = x
a sin∅ + b cos∅ = y
then prove that a²+ b² = x² + y².
Given :
a cos∅ - b sin∅ = x
Squaring both side we get ,
⇒ a² cos²∅ + b² sin²∅ - 2 · a cos∅ · b sin∅ = x²
∴ a² cos²∅ + b² sin²∅ - 2 · a cos∅ · b sin∅ = x²...........(i)
Again
a sin∅ + b cos∅ = y
Squaring both side we get ,
⇒ a² sin²∅ + b² cos²∅ + 2 · a cos∅ · b sin∅ = y²
∴ a² sin²∅ + b² cos²∅ + 2 · a cos∅ · b sin∅ = y²................(ii)
Now
By adding eq.(i) and eq.(ii) we get ,
⇒ a²(cos²∅ + sin²∅) + b² (cos²∅ + sin²∅) = x² + y²
We know that (cos²∅ + sin²∅) = 1
∴ a² + b² = x² + y².
Hence proved.
Thanks..
Answered by
7
SOLUTION ☺️
Given:-
hope it helps ✔️
Similar questions