Math, asked by pari142004, 1 year ago

please ans me fast....its urgent​

Attachments:

Answers

Answered by Anonymous
3

Question:

[[[[[Should be]]]]]

If a cos∅ - b sin∅ = x

 a sin∅ + b cos∅ = y

then prove that a²+ b² = x² + y².

Solution:

Given :

a cos∅ - b sin∅ = x

Squaring both side we get ,

⇒ a² cos²∅ + b² sin²∅ - 2 · a cos∅ · b sin∅ = x²

∴ a² cos²∅ + b² sin²∅ - 2 · a cos∅ · b sin∅ = x²...........(i)

Again

a sin∅ + b cos∅ = y

Squaring both side we get ,

⇒ a² sin²∅ + b² cos²∅ + 2 · a cos∅ · b sin∅ = y²

∴  a² sin²∅ + b² cos²∅ + 2 · a cos∅ · b sin∅ = y²................(ii)

Now

By adding eq.(i) and eq.(ii) we get ,

⇒ a²(cos²∅ + sin²∅) + b² (cos²∅ + sin²∅) =  x² + y²

We know that (cos²∅ + sin²∅) = 1

∴ a² + b² = x² + y².

Hence proved.

Thanks..

Answered by Anonymous
7

SOLUTION ☺️

Given:-

 =  > x = a \: cos \theta - b \: sin \theta \\  =  > therefore \\  =  > x {}^{2}  = (a \: cos \theta - b \: sin \theta) {}^{2} \\  =  > x {}^{2}  = (a {}^{2} \: cos {}^{2}  \theta) + (b {}^{2}  \: sin {}^{2}  \theta) - (2ab \: cos \theta \: sin \theta) -  -  -  - (1) \\  \\  =  >also \: given \\  = > y = a \: sin \theta + b \: cos \theta \\ therefore \\  =  > y {}^{2} = (a \: sin \theta + b \: cos \theta) {}^{2}   \\   =  > y {}^{2}  = (a {}^{2} sin {}^{2}  \theta) + (b {}^{2}  \: cos {}^{2}  \theta) - (2ab \: cos \theta \: sin \theta) -  -  -  -  - (2) \\  \\  =  > adding \: (1) \: and \: (2) \\  =  > x {}^{2}  + y {}^{2}  = (a {}^{2} \: cos {}^{2}  \theta) + (b {}^{2} sin {}^{2}  \theta) - (2ab \: cos \theta \: sin \theta)  + (a {}^{2} sin {}^{2} \theta) + (b {}^{2} cos {}^{2}  \theta) + (2ab \: cos \theta \: sin \theta) \\  =  > cancelling(2ab \: cos \theta \: sin \theta) \: and \: - (2ab \: cos \theta \: sin \theta) \\  =  > x {}^{2}  + y {}^{2}  = (a {}^{2} cos {}^{2}  \theta) + (b{}^{2} sin {}^{2}  \theta) + (a {}^{2} sin {}^{2}  \theta) + (b {}^{2} cos {}^{2}  \theta)  \\  \\  =  > bringing \: a {}^{2}  \: terms \: and \: b {}^{2} \: terms \: together \\  =  > x {}^{2}  + y {}^{2}  = (a {}^{2} cos {}^{2} \theta) + (a {}^{2}  sin {}^{2}  \theta) + (a {}^{2} sin {}^{2}  \theta) + (b {}^{2}cos {}^{2}   \theta) \\  =  > x {}^{2}  + y {}^{2}  = a {}^{2} (cos {}^{2}  \theta + sin {}^{2} \theta ) +b {}^{2} (sin {}^{2}  \theta + cos {}^{2}  \: theta) \\  =  > by \: the \: identify \: sin {}^{2}  \theta + cos {}^{2}  \theta = 1 \\  =  > x {}^{2}  + y {}^{2}  = a {}^{2} (1) + b {}^{2} (1) \\  \\  =  >  {x}^{2}  +  {y}^{2}  = a {}^{2}  + b {}^{2}  \:  \: proved

hope it helps ✔️

Similar questions