Math, asked by gugu9220, 1 month ago

Please ans this prove it​

Attachments:

Answers

Answered by Anonymous
117

Refer to the attachment for complete solution.

All Trigonometric Basic Formulas :-

  • sin A = Perpendicular / Hypotenuse
  • cos A = Base / Hypotenuse
  • tan A = Perpendicular / base
  • cosec A = Hypotenuse / Perpendicular
  • cos A = Hypotenuse / base
  • cot A = Base / Hypotenuse
  • sec² A - tan² A = 1
  • 1 + cot² A = cosec²A
  • sin² A + cos² A = 1
  • sin A = 1 / cosec A
  • cos A = 1 / sec A
  • tan A = 1 / cot A
  • cosec A = 1 / sin A
  • sec A = 1 / cos A
  • cot A = 1 / tan A
  • tan A = sin A / cos A
  • tan A = sec A / cosec A
  • cot A = cos A / sin A
  • cot A = cosec A / cos A
  • sin ( 90° - A ) = cos A
  • cos ( 90° - A ) = sin A
  • tan ( 90° - A ) = cot A
  • cot ( 90° - A ) = tan A
  • cosec ( 90° - A ) = sec A
  • sec ( 90° - A ) = cos A
Attachments:
Answered by mathdude500
5

\large\underline{\sf{Given \:Question - }}

Prove that

\rm :\longmapsto\:\dfrac{tanA + secA - 1}{tanA - secA + 1}  = \dfrac{1 + sinA}{cosA}

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\:\dfrac{tanA + secA - 1}{tanA - secA + 1}

We know that,

\boxed{ \rm \: {sec}^{2}x -  {tan}^{2}x = 1}

So, using this identity in numerator, we get

\rm \:  =  \:\dfrac{tanA + secA - ( {sec}^{2} A -  {tan}^{2} A)}{tanA - secA + 1}

We know,

\boxed{ \rm \: {x}^{2} -  {y}^{2} = (x + y)(x - y)}

So, using this identity, we get

\rm \:  =  \:\dfrac{(tanA + secA) - (secA + tanA)(secA - tanA)}{tanA - secA + 1}

\rm \:  =  \:\dfrac{(secA + tanA)\bigg[1 - (secA - tanA)\bigg]}{tanA - secA + 1 }

\rm \:  =  \:\dfrac{(secA + tanA)\bigg[1 - secA + tanA\bigg]}{tanA - secA + 1 }

\rm \:  =  \:secA + tanA

\rm \:  =  \:\dfrac{1}{cosA}  + \dfrac{sinA}{cosA}

\rm \:  =  \:\dfrac{1 + sinA}{cosA}

Hence,

\rm :\longmapsto\:\boxed{ \bf \:\dfrac{tanA + secA - 1}{tanA - secA + 1}  = \dfrac{1 + sinA}{cosA} }

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions