Math, asked by harithareddy1115, 3 months ago

please ans this question I'm simple and clear manner ​

Attachments:

Answers

Answered by udayagrawal49
3

Answer:

\tt{ \lim_{x \to \dfrac{\pi}{2}} \dfrac{cot\,x - cos\,x}{(\dfrac{\pi}{2}-x)^{3}} = \dfrac{1}{2}}

Step-by-step explanation:

Given: \tt{ \lim_{x \to \dfrac{\pi}{2}} \dfrac{cot\,x - cos\,x}{(\dfrac{\pi}{2}-x)^{3}} }

\tt{ = \lim_{x \to \dfrac{\pi}{2}} \dfrac{\dfrac{cos\,x}{sin\,x} - cos\,x}{(\dfrac{\pi}{2}-x)^{3}} }

\tt{ = \lim_{x \to \dfrac{\pi}{2}} \dfrac{cos\,x - sin\,x \ cos\,x}{sin\,x \ (\dfrac{\pi}{2}-x)^{3}} }

\tt{ = \lim_{x \to \dfrac{\pi}{2}} \dfrac{cos\,x \ (1 - sin\,x)}{sin\,x \ (\dfrac{\pi}{2}-x)^{3}} }

\tt{ = \lim_{x \to \dfrac{\pi}{2}} \dfrac{sin\,(\dfrac{\pi}{2}-x) \ (1 - sin\,x)}{sin\,x \ (\dfrac{\pi}{2}-x)(\dfrac{\pi}{2}-x)^{2}} }

\tt{ = \lim_{x \to \dfrac{\pi}{2}} \dfrac{1 - sin\,x}{sin\,x \ (\dfrac{\pi}{2}-x)^{2}} }

\tt{ = \lim_{x \to \dfrac{\pi}{2}} \dfrac{cosec\,x - 1}{(\dfrac{\pi}{2}-x)^{2}} }

On applying L'Hopital's Rule, we get

\tt{ = \lim_{x \to \dfrac{\pi}{2}} \dfrac{-cosec\,x \ cot\,x}{-2(\dfrac{\pi}{2}-x)} }

\tt{ = \lim_{x \to \dfrac{\pi}{2}} \dfrac{\dfrac{1}{sin\,x} \times \dfrac{cos\,x}{sin\,x}}{2(\dfrac{\pi}{2}-x)} }

\tt{ = \lim_{x \to \dfrac{\pi}{2}} \dfrac{cos\,x}{2\,sin^{2}\,x(\dfrac{\pi}{2}-x)} }

\tt{ = \lim_{x \to \dfrac{\pi}{2}} \dfrac{sin\,(\dfrac{\pi}{2}-x)}{2\,sin^{2}\,x \ (\dfrac{\pi}{2}-x)} }

\tt{ = \lim_{x \to \dfrac{\pi}{2}} \dfrac{1}{2\,sin^{2}\,x} }

\tt{ = \dfrac{1}{2\,sin^{2}(\dfrac{\pi}{2})} }

= 1/2

Similar questions