Math, asked by odishaedutechfact202, 2 months ago

Please Ans this question it is urgent ​

Attachments:

Answers

Answered by BrainlyTornado
4

QUESTION:

 \displaystyle  \sf  \large log_{ \sqrt{a} }( \sqrt{ {a}^{   - \frac {8}{5} }} )

 \\

ANSWER:

 \displaystyle  \sf  \large log_{ \sqrt{a} }( \sqrt{ {a}^{   - \frac {8}{5} }} )  =  -  \frac{8}{5}

 \\

GIVEN AND TO FIND:

 \displaystyle  \sf  \large The \ value \ of  \ log_{ \sqrt{a} }( \sqrt{ {a}^{   - \frac {8}{5} }} )

 \\

EXPLANATION:

 \displaystyle  \sf Let \ log_{ \sqrt{a} }( {a}^{  - \frac {8}{5} } ) = x

  \pink{\boxed{ \large { \bold{log_{ a }(b )  = x \implies \  b =  {a}^{x}  }}}}

 \leadsto\displaystyle  \sf\sqrt{ {a}^{   - \frac {8}{5} }} =  {( \sqrt{a}) }^{x}

\leadsto \displaystyle  { \large{\sf {a}^{   - \frac {8}{5} \times  \frac{1}{2}  } =  {( a}) }^{x \times  \frac{1}{2} }}

Bases are equal, so equate the powers.

 \leadsto\sf  - \dfrac {8}{5} \times  \dfrac{1}{2}   =  x \times  \dfrac{1}{2}

 \leadsto \sf  x  = - \dfrac {8}{5}

\bigstar\blue{\boxed{ \bold {\large log_{ \sqrt{a} }( \sqrt{ {a}^{   - \frac {8}{5} }} )  =  -  \frac{8}{5}}}}

Similar questions