Physics, asked by rihan1860, 10 months ago

Please ans this Vectors ques !

Attachments:

Answers

Answered by rockyboy91
1

Explanation:

We know the equation,

 {a}^{2}  +  {b}^{2}  + 2ab \cos( \alpha )  =  {r}^{2}

Also,

tan \alpha  =  \frac{b \sin( \beta ) }{a + b \cos( \beta ) }

Where beta is the angle btw a and b.

We are given,

 \alpha  = 90

So,

 \frac{1}{0}  = \frac{b \sin( \beta ) }{a + b \cos( \beta ) }  \\

Equating the denominator,

0 = a + b \cos( \beta )  \\ b \cos( \beta )  =  - a \\  \cos( \beta )  =  -  \frac{a}{b}  \\  \beta  =    { \cos }^{ - 1}  \frac{ - a}{b}

Answered by Anonymous
0

\huge\bf\fbox\red{Answer:-}

We know the equation,

{a}^{2} + {b}^{2} + 2ab \cos( \alpha ) = {r}^{2}

Also,

tan \alpha = \frac{b \sin( \beta ) }{a + b \cos( \beta ) }

Where beta is the angle btw a and b.

We are given,

\alpha = 90

So,

\begin{gathered} \frac{1}{0} = \frac{b \sin( \beta ) }{a + b \cos( \beta ) } \\ \end{gathered}

Equating the denominator,

\begin{gathered}0 = a + b \cos( \beta ) \\ b \cos( \beta ) = - a \\ \cos( \beta ) = - \frac{a}{b} \\ \beta = { \cos }^{ - 1} \frac{ - a}{b} \end{gathered}

Similar questions