Math, asked by sanjanac029, 11 months ago

please ans trignometry class 12th.Prove ​

Attachments:

Answers

Answered by Anonymous
4

Answer:

hope this will help you ........

mark it as brainlist✍️✍️

Attachments:
Answered by Rajshuklakld
6

Question:-Take LHS

The LHS can also be written that

tan9 - tan27 - tan(90 - 27) + tan(90 - 9) \\ we \: know \: tan(90  -  \alpha ) = cot \alpha \\ so \: using \: this \: we \: get \\ tan9 + cot9 - (tan27 + cot27) \\ convert \: into \: sin \: and \: cos \: term \:   \\  \frac{sin9}{cos9}  +  \frac{cos9}{sin9}  - ( \frac{sin27}{cos27}  +  \frac{cos27}{sin27}) \\  \frac{ {sin}^{2}9 + {cos}^{2}9 }{sin9cos9} -  \frac{( {sin}^{2}27 +  {cos}^{2}27)  }{sin27cos27}  \\  \frac{1}{sin9cos9}  -  \frac{1}{sin27cos27}  \\ multiply \: numertor \: and \: denominator \:by \: 2 \\  \frac{2}{2sin9cos9}  -  \frac{2}{2sin27cos27}  \\ we \: know \: 2sin \alpha cos \alpha  = sin2 \alpha  \\  \frac{2}{sin18}  -  \frac{2}{sin54}  \\ sin18 =  \frac{ \sqrt{5} - 1 }{4} and \: sin54 =   \frac{ \sqrt{5}   + 1}{4} \\ putting \: this \: value \: we \: get \\  \frac{2}{ \frac{ \sqrt{5}  - 1}{4} }   -  \frac{2}{ \frac{ \sqrt{5} + 1 }{4} }  \\  =   \frac{8}{ \sqrt{5} - 1 }   -  \frac{8}{ \sqrt{5} + 1 }   \\  = (8( \sqrt{5} + 1) - 8( \sqrt{5} - 1) \: ) \times  \frac{1}{( \sqrt{5}  + 1)( \sqrt{5} - 1) }  \\  \frac{8 \sqrt{5} + 8 - 8 \sqrt{5}  + 8 }{5 - 1}  \\  \frac{16}{4}  = 4 = LHS

{hope it helps you}

Similar questions