Math, asked by nachiket23, 11 months ago

please anssssssssssssss​

Attachments:

Answers

Answered by Anonymous
9

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{\pink{Given}}}}}

\mapsto\sf{\green{\:\dfrac{3}{x+y}+\dfrac{2}{x-y}\:=\:2...(1)}} \\ \\ \mapsto\sf{\green{\:\dfrac{9}{x+y}-\dfrac{4}{x-y}\:=\:1....(2)}}

\underline{\sf{\pink{\:Step-by-Step-Explanation}}}

First,Let

\mapsto\sf{\:\dfrac{1}{x+y}\:=\:p} \\ \\ \mapsto\sf{\:\dfrac{1}{x-y}\:=\:q}

New, equation,

  • 3p + 2q = 2 .....(3)
  • 9p - 4q = 1 .......(4)

Multiply by 9 in (3) and 3 in (4) ,

  • 27p + 18q = 18
  • 27p - 12q = 3

_________________subtract it

\mapsto\sf{\:30q\:=\:15} \\ \\ \mapsto\sf{\:q\:=\:\dfrac{\cancel{15}}{\cancel{30}}} \\ \\ \mapsto\sf{\pink{\:q\:=\:\dfrac{1}{2}}}

Keep value of q in equ(3),

\mapsto\sf{\:3p+2\times \dfrac{1}{2}\:=\:2} \\ \\ \mapsto\sf{\:3p\:=\:2-1} \\ \\ \mapsto\sf{\pink{\:p\:=\:\dfrac{1}{3}}}

Now, find value of x and y ,

First, for x :-

\mapsto\boxed{\sf{\:p\:=\:\dfrac{1}{x+y}}} \\ \\ \mapsto\sf{\:\dfrac{1}{x+y}\:=\:\dfrac{1}{3}} \\ \\ \mapsto\sf{\orange{\:x+y\:=\:3....(5)}}

Again, For y:-

\mapsto\boxed{\sf{\:q\:=\:\dfrac{1}{x-y}}} \\ \\ \mapsto\sf{\:\dfrac{1}{2}\:=\:\dfrac{1}{x-y}} \\ \\ \mapsto\sf{\orange{\:x-y\:=\:2....(6)}}

Addition of equ(5) and (6),

\mapsto\sf{\:2x\:=\:5} \\ \\ \mapsto\sf{\green{\:x\:=\:\dfrac{5}{2}}}

Keep value of x in equ(5)

\mapsto\sf{\:\dfrac{5}{2}+y\:=\:3} \\ \\ \mapsto\sf{\:y\:=\:3\:-\:\dfrac{5}{2}} \\ \\ \mapsto\sf{\:y\:=\:\dfrac{6-5}{2}} \\ \\ \mapsto\sf{\green{\:y\:=\:\dfrac{1}{2}}}

\Large{\underline{\mathfrak{\bf{\red{\:Thus}}}}}

\mapsto\sf{\orange{\:Value\:of\:x\:=\:\dfrac{5}{2}}} \\ \\ \mapsto\sf{\orange{\:Value\:of\:y\:=\:\dfrac{1}{2}}}

\underline{\bf{\pink{\:Answer\:Verification}}}

keep value of x and y in equ(5)

\mapsto\sf{\:\dfrac{5}{2}+\dfrac{1}{2}\:=\:3} \\ \\ \mapsto\sf{\:\dfrac{5+1}{2}\:=\:3} \\ \\ \mapsto\sf{\:\dfrac{\cancel{6}}{\cancel{2}}\:=\:3} \\ \\ \mapsto\sf{\green{\:3\:=\:3}} \\ \\ \mathfrak{\bf{\:\:\:\:L.H.S.\:=\:R.H.S.}}

That's proved

Similar questions