Math, asked by seemaupadhyay97205, 9 months ago

please answer.........​

Attachments:

Answers

Answered by Anonymous
7

\large\underline{\underline{Question\:No.\:14}}

______________________________________

\large\underline{\underline{To\:Find:}}

To prove that:

\big(3cos\:\alpha - 4cos^{3}\alpha\big) = 0

when;

 sin\:\alpha = \dfrac{1}{2}

______________________________________

\large\underline{\underline{Concept:}}

To find the proof of the Equation , firstly we have to find the value of \alpha.

______________________________________

\large\underline{\underline{solution:}}

  •  sin\:\alpha = \dfrac{1}{2}

\Rightarrow sin\:\alpha = sin 30°

\Rightarrow \alpha = 30°

putting the value in the equation, we get

\Rightarrow\big(3cos 30° - 4cos 30°^{3}\big) = 0

\Rightarrow\big(3 \times \dfrac{\sqrt{3}}{2} - 4 × \dfrac{\sqrt{3}}{2}^{3}\big) = 0

\Rightarrow\big(\dfrac{3\sqrt{3}}{2} - \dfrac{12\sqrt{3}}{8}\big) = 0

\Rightarrow\big(\dfrac{12\sqrt{3} - 12\sqrt{3}}{8}\big) = 0

\Rightarrow\big(\dfrac{0}{8}\big) = 0

\Rightarrow 0 = 0

{\boxed{\therefore \big(3cos\:\alpha - 4cos^{3}\alpha\big) = 0\:is\:proved}}

Answered by Anonymous
3

\sf\blue{Question:}

\sf{tan\theta=\dfrac{1}{2} \ then \ evaluate \ (\dfrac{cos\theta}{sin\theta}+\dfrac{sin\theta}{1+cos\theta}).}

__________________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{\dfrac{2+5sin\theta}{1+2sin\theta}}

\sf\orange{Given:}

\sf{\leadsto{tan\theta=\dfrac{1}{2}}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ (\dfrac{cos\theta}{sin\theta}+\dfrac{sin\theta}{1+cos\theta})}

\sf\green{\underline{\underline{Solution:}}}

\sf{tan\theta=\dfrac{1}{2}}

\sf\blue{tan\theta=\dfrac{sin\theta}{cos\theta}}

\sf{\therefore{\dfrac{sin\theta}{cos\theta}=\dfrac{1}{2}}}

\sf{\therefore{cos\theta=2sin\theta}}

\sf{\leadsto{(\dfrac{cos\theta}{sin\theta}+\dfrac{sin\theta}{1+cos\theta})}}

\sf{\leadsto{\dfrac{2sin\theta}{sin\theta}+\dfrac{sin\theta}{1+2sin\theta}}}

\sf{\leadsto{2+\dfrac{sin\theta}{1+2sin\theta}}}

\sf{\leadsto{\dfrac{2+4sin\theta+sin\theta}{1+2\sin\theta}}}

\sf\purple{\tt{\leadsto{\dfrac{2+5sin\theta}{1+2sin\theta}}}}

Similar questions