Math, asked by viraalsingh, 1 day ago

please answer !!!!!!!​

Attachments:

Answers

Answered by user0888
8

\Large\text{\underline{\underline{Step 1. Check the conditions}}}

The formula for the last two digits is -

\text{$\cdots\longrightarrow$ The remainder of $7^{n}\div100.$}

We would get, -

\text{$\cdots\longrightarrow Q$ as the quotient and $R$ as the remainder.}

In expression, -

\text{$\cdots\longrightarrow7^{n}=100Q+R.$}

However, if we multiply 7,

\text{$\cdots\longrightarrow7^{n+1}=700Q+7R.$}

We only need to check the remainder.

\Large\text{\underline{\underline{Step 2. Recurring sequence}}}

The last two digits repeat -

\text{$\cdots\longrightarrow\boxed{\begin{aligned}&a_{1}=7\\&a_{2}=49\\&a_{3}=43\\&a_{4}=1.\end{aligned}}$}

Now we should know that -

\text{$\cdots\longrightarrow\boxed{\begin{aligned}&a_{4n-3}=7\\&a_{4n-2}=49\\&a_{4n-1}=43\\&a_{4n}=1.\end{aligned}}$}

\Large\text{\underline{\underline{Step 3. Conclusion part}}}

(Choice 1)

Hence, -

\text{$\cdots\longrightarrow a_{2021}=a_{4\times505+1}=a_{1}=7.$}

(Choice 2 or 4)

And, -

\text{$\cdots\longrightarrow\boxed{\begin{aligned}\displaystyle&\sum^{100}_{r=1}a_{r}\\\\&=\displaystyle\sum^{25}_{r=1}a_{4r-3}+\sum^{25}_{r=1}a_{4r-2}+\sum^{25}_{r=1}a_{4r-1}+\sum^{25}_{r=1}a_{4r}\\\\&=25\times(7+49+43+1)\\\\&=25\times 100\\\\&=2500.\end{aligned}}$}

(Choice 3)

Lastly, -

\text{$\cdots\longrightarrow a_{2022}=a_{4\times505+2}=a_{2}=49.$}

So, the last choice is correct.

Similar questions