Math, asked by spoorthy2169, 1 year ago

Please answer 4th question

Attachments:

Answers

Answered by arunkumar516235
3

Step-by-step explanation:

check this image.

here is your answer.

Attachments:
Answered by Anonymous
12

\red{ANSWER}

\rm{a^{x}=2^{\frac{3}{2}}}

\bold{\pink{EXPLANATION}}

\underline{\mathbb{GIVEN\:QUESTION\:IS}}

\rm{\log_{a}\left(\frac{\left(13\right)^2}{\sqrt{2^3}\times5}\right)=2\log_{a}13-\log_{a}5-x}

\underline{\mathbb{SOLUTION}}

\rm{\log_{a}\left(\frac{\left(13\right)^2}{\sqrt{2^3}\times\:5}\right)=\log{a}\left(13\right)^2-\log_{a}5-x}

\boxed{\pink{\log_{x}\:y^n=n\log_{x}y}}

\rm{\log_{a}\left(\frac{\left(13\right)^2}{\sqrt{2^3}\times5}\right)=\left(\log_{a}\frac{\left(13\right)^2}{5}\right)-x}

\boxed{\pink{\log_{a}\:m-\log_{a}\:n=\log_{a}\:\left(\frac{m}{n}\right)}}

\rm{\log_{a}\left(\frac{\left(13\right)^2}{\sqrt{2^3}\times5}\right)-\left(\log_{a}\frac{\left(13\right)^2}{5}\right)=-x}

\rm{\log_{a}\left(\frac{\left(13\right)^2}{\sqrt{2^3}\times5}\times\frac{\left(13\right)^2}{5}\right)=-x}

\boxed{\pink{\log_{a}m-\log_{a}n=\log_{a}\left(\frac{m}{n}\right)}}

\rm{log_{a}\:\left(2^{\frac{-3}{2}}\right)=-x}

\rm{\frac{-3}{2}\log_{a}2}=-x

\boxed{\pink{\log_{x}\:y^n=n\log_{x}y}}

\rm{log_{a}\:\left(2^{\frac{3}{2}}\right)=x}

\boxed{\pink{\rm{IF\:\log_{x}\:y=z\:\:\:Then\:\:y=x^z}}}

\rm{2^{\frac{3}{2}}=a^x}

\rm{a^x=2^{\frac{3}{2}}}

\therefore\rm{a^x=2^{\frac{3}{2}}}

\rm{\pink{HENCE,\:OPTION\:'A'\:IS\:CORRECT}}

Similar questions