Physics, asked by rohansp346, 9 hours ago

please. answer above question​

Attachments:

Answers

Answered by vikkiain
3

Answer:

{v}^{2}  = 2x(x + 1)

Explanation:

given \:  \: a = 2x + 1 \\ we \:  \: know \: that \:  \: a =  \frac{dv}{dx }  \\ a =  \frac{dx}{dt}  \frac{dv}{dx}  = v \frac{dv}{dx}  \\ 2x + 1 =  v\frac{dv}{dx}  \\ (2x + 1)dx = vdv \\  \int(2x + 1)dx =  \int vdv \\ 2 \times \frac{ {x}^{2} }{2}  + x =  \frac{ {v}^{2} }{2}  + c \\  {x}^{2}  + x =  \frac{ {v}^{2} }{2}  + c \\ A/Q, \:  \:  \:  \: v = 0 \:  \: at \:  \:  \: x = 0 \\ then \:  \:  \:  \\  {0}^{2}  + 0 =  \frac{ {0}^{2} }{2}  + c \\ c = 0 \\so, velocity-displacement\:\: equation \\  {x}^{2}  + x =  \frac{ {v}^{2} }{2}  \\  {v}^{2}  = 2x(x + 1)

Similar questions