please answer all of them
Answers
Question:-
11. If 4x² + 9y² = 136 and xy = 10, find 2x + 3y.
Solution:-
We already have:-
- 4x² + 9y² = 136
- xy = 10 .... (a)
Also we know:-
- x² + y² = (x² - y²) + 2xy .... (i)
Now,
4x² + 9y² = 136
= (2x)² + (3y)² = 136
Applying the formula from (i) we get:-
= (2x - 3y)² + 12xy = 136
Expanding (2x - 3y) we get:-
= (2x)² + (3y)² - 12xy + 12xy = 136
= (2x)² + (3y)² + 12xy - 12xy = 136
= {(2x)² + (3y)² + 2 × 2x × 3y} - 12xy = 136
= (2x + 3y)² - 12xy = 136
Putting xy = 10 from (a)
= (2x + 3y)² - 12 × 10 = 136
= (2x + 3y)² - 120 = 136
= (2x + 3y)² = 136 + 120
= (2x + 3y)² = 256
= 2x + 3y = √256
= 2x + 3y = 16
∴ The value of 2x + 3y is 16.
________________________________
________________________________
Question:-
12. If x + y + z = 9 and x² + y² + z² = 35, find the value of x³ + y³ + z³ - 3xyz.
Solution:-
We are already given:-
- x + y + z = 9 ------- (i)
- x² + y² + z² = 35 ------- (ii)
We also know:-
- (x + y + z)² = x² + y² + z² + 2(xy + yz + zx) .... (a)
- x³ + y³ + z³ - 3xyz = (x + y + z)[(x² + y² + z²) - (xy + yz + zx) .... (b)
Now,
From (i)
x + y + z = 9
Squaring on both sides:-
(x + y + z)² = (9)²
Using identity (a):-
= x² + y² + z² + 2(xy + yz + zx) = 81
= (x² + y² + z²) + 2(xy + yz + zx) = 81
From (ii):-
= 35 + 2(xy + yz + zx) = 81
= 2(xy + yz + zx) = 81 - 35
= 2(xy + yz + zx) = 46
=> xy + yz + zx = 46/2
=> xy + yz + zx = 23 ---------- (iii)
Now,
Putting all the values in identity (b):-
x³ + y³ + z³ - 3xyz = (x + y + z)[(x² + y² + z²) - (xy + yz + zx)]
= x³ + y³ + z³ - 3xyz = 9(35 - 23)
= x³ + y³ + z³ - 3xyz = 9 × 12
= x³ + y³ + z³ - 3xyz = 108
∴ The value of x³ + y³ + z³ - 3xyz is 108.
________________________________
________________________________
Question:-
13. Factorise 16√5 x² - 50x + 5√5
Solution:-
By middle term factorisation:-
= 16√5x² - 40x - 10x + 5√5
= 8√5x(2x - √5) - 5(2x - √5)
= (2x - √5)(8√5x - 5)
Hence Factorised!
________________________________
________________________________
Question:-
14. Factorise 27y³ + 125z³
Solution:-
= 27y³ + 125z³
= (3y)³ + (5z)³
Now using the identity:-
- a³ + b³ = (a - b)(a² + ab + b²)
= (3y + 5z)[(3y)² + 3y × 5z + (5z)²]
= (3y + 5z)(9y² + 15xy + 125z²)
Hence, Factorised!
________________________________
________________________________
Question:-
15. Show that (x - 1) is a factor of the polynomial p(x) = x³ + 2x² - x - 2 and hence factorise p(x)
Solution:-
We have:-
- p(x) = x³ + 2x² - x - 2
- g(x) = (x - 1)
Now:-
g(x) = x - 1 = 0
= x = 1
Putting x = 1 in p(x)
p(1) = (1)³ + 2(1)² - 1 - 2
p(1) = 1 + 2 - 1 - 2
p(1) = 3 - 3
p(1) = 0
∴ (x - 1) is a factor of p(x) = x³ + 2x² - x - 2.
Now, factorising p(x)
= x³ + 2x² - x - 2
= x²(x + 2) - 1(x + 2)
= (x + 2)(x² - 1)
= (x+2)(x+1)(x-1)
Hence Factorised!
________________________________
________________________________